2010
[d4U]-Spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase
Younis Y, Hunter R, Muhanji C, Hale I, Singh R, Bailey C, Sullivan T, Anderson K. [d4U]-Spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase. Bioorganic & Medicinal Chemistry 2010, 18: 4661-4673. PMID: 20605472, PMCID: PMC2964380, DOI: 10.1016/j.bmc.2010.05.025.Peer-Reviewed Original Research
2008
C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors
Hunter R, Younis Y, Muhanji C, Curtin T, Naidoo K, Petersen M, Bailey C, Basavapathruni A, Anderson K. C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors. Bioorganic & Medicinal Chemistry 2008, 16: 10270-10280. PMID: 18996020, PMCID: PMC2639753, DOI: 10.1016/j.bmc.2008.10.048.Peer-Reviewed Original ResearchConceptsThiourea derivativesHI-236C-2 arylationC-2 oxygenStructure-activity profilePhenyl ringAnti-HIV activityNNRTI pocketC-2Drug designCell-free RT assaysDocking modelThioureaDerivativesInhibitory activityBifunctional inhibitorsImproved leadsPhenylAutoDockDockingRingCompoundsPocketSpatial characteristicsMT-2 cell cultures
2000
Energetics of S-Adenosylmethionine Synthetase Catalysis †
McQueney M, Anderson K, Markham G. Energetics of S-Adenosylmethionine Synthetase Catalysis †. Biochemistry 2000, 39: 4443-4454. PMID: 10757994, DOI: 10.1021/bi992876s.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceBinding SitesCatalysisComputer SimulationDiphosphatesEscherichia coliFluorescenceHydrolysisIsomerismKineticsLigandsMethionineMethionine AdenosyltransferaseOxygenOxygen IsotopesPhosphatesPolyphosphatesS-AdenosylmethionineSolventsThermodynamicsTitrimetryWaterConceptsFree energy profilesSubstrate bindingLoop movementEnergy profilesFormation of AdoMetS-adenosylmethionineChemical interconversion stepPre-steady-state kineticsS-adenosylmethionine synthetaseProduct releaseP(i) complexEquilibrium binding measurementsEnzyme-catalyzed reactionsAdoMet formationBiological alkylating agentsConcentration of substrateFormation reactionCrystallographic studiesEnzyme turnoverEquilibrium constantsCatalyze formationRate constantsInterconversion stepActive siteBinding energy
1996
Intersubunit Communication in Tryptophan Synthase by Carbon-13 and Fluorine-19 REDOR NMR †
McDowell L, Lee M, McKay R, Anderson K, Schaefer J. Intersubunit Communication in Tryptophan Synthase by Carbon-13 and Fluorine-19 REDOR NMR †. Biochemistry 1996, 35: 3328-3334. PMID: 8605170, DOI: 10.1021/bi9518297.Peer-Reviewed Original ResearchConceptsProton dipolar decouplingMagic angle spinningLocal electric field gradientsElectric field gradientIsotropic shiftsLigand bindingChemical shiftsNMR spectraConformational gatingEnzyme tryptophan synthaseBeta subunitCarbon-13Dipolar decouplingTryptophan synthaseMother liquorResolved linesConformational rearrangementsBinding of serineNMRLigandField gradientEnzyme complexIntersubunit communicationTyrosine residuesSubunit
1991
Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism
Anderson K, Miles E, Johnson K. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. Journal Of Biological Chemistry 1991, 266: 8020-8033. PMID: 1902468, DOI: 10.1016/s0021-9258(18)92934-0.Peer-Reviewed Original ResearchConceptsIndole-3-glycerol phosphateTryptophan synthaseProtein conformationAlpha 2 beta 2 complexReaction of serineAbsence of serineBeta siteFormation of tryptophanAlpha siteSteady-state turnoverActive siteAccumulation of indoleAlpha reactionSubstitution of cysteineSubstrate channelingBeta reactionBeta subunitMetabolic intermediatesSerineAlpha subunitQuench-flowProtein fluorescenceTurnover experimentsProteinTryptophan release