2007
Epidermal Growth Factor Receptor Mutants from Human Lung Cancers Exhibit Enhanced Catalytic Activity and Increased Sensitivity to Gefitinib
Mulloy R, Ferrand A, Kim Y, Sordella R, Bell D, Haber D, Anderson K, Settleman J. Epidermal Growth Factor Receptor Mutants from Human Lung Cancers Exhibit Enhanced Catalytic Activity and Increased Sensitivity to Gefitinib. Cancer Research 2007, 67: 2325-2330. PMID: 17332364, DOI: 10.1158/0008-5472.can-06-4293.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorEpidermal growth factor receptor mutantMultiple levels in vivoIn vitro kinase assayEpidermal growth factor receptor functionPurified recombinant proteinWild-type epidermal growth factor receptorSensitivity to kinase inhibitionNon-small cell lung cancerCOOH-terminal tyrosineHuman non-small cell lung cancerIncreased sensitivity to gefitinibSensitivity to gefitinibCell lung cancerAutophosphorylation activityGrowth factor receptorCell-based studiesEGFR kinase inhibitorsCytoplasmic domainRecombinant proteinsKinase assayEnzyme functionDownstream effectorsMutantsKinase activity
2002
The Kinetic Mechanism of the Human Bifunctional Enzyme ATIC (5-Amino-4-imidazolecarboxamide Ribonucleotide Transformylase/Inosine 5′-Monophosphate Cyclohydrolase) A SURPRISING LACK OF SUBSTRATE CHANNELING*
Bulock K, Beardsley G, Anderson K. The Kinetic Mechanism of the Human Bifunctional Enzyme ATIC (5-Amino-4-imidazolecarboxamide Ribonucleotide Transformylase/Inosine 5′-Monophosphate Cyclohydrolase) A SURPRISING LACK OF SUBSTRATE CHANNELING*. Journal Of Biological Chemistry 2002, 277: 22168-22174. PMID: 11948179, DOI: 10.1074/jbc.m111964200.Peer-Reviewed Original ResearchConceptsCyclohydrolase reactionProduction of inosine monophosphateRelease of tetrahydrofolateSteady-state kinetic techniquesStopped-flow absorbanceBifunctional enzymeActive siteBifunctional proteinSubstrate channelingInosine 5'-monophosphateCyclohydrolaseEnzymatic activityChemotherapeutic targetEnzyme reaction pathwayInosine monophosphateKinetic mechanismFormyltransferaseProteinEnzymeKinetic analysisPathwayKinetic advantageKinetic evidenceKinetic techniquesRibonucleotides
2000
Insights into the HER-2 Receptor Tyrosine Kinase Mechanism and Substrate Specificity Using a Transient Kinetic Analysis †
Jan A, Johnson E, Diamonti A, Carraway K, Anderson K. Insights into the HER-2 Receptor Tyrosine Kinase Mechanism and Substrate Specificity Using a Transient Kinetic Analysis †. Biochemistry 2000, 39: 9786-9803. PMID: 10933796, DOI: 10.1021/bi9924922.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesRecombinant proteinsTyrosine kinaseSerine/threonine kinaseProtein kinase familyReceptor-like proteinCatalytic mechanismDegenerate peptide libraryStopped-flow fluorescence studiesIntracellular tyrosine kinase domainTyrosine kinase mechanismTyrosine kinase domainState kinetic analysisThreonine kinaseKinase familyCatalytic subunitKinase domainPhosphorylation stateSubstrate specificityProtein modificationNucleotide interactionsKinase mechanismConformational changesTransient kinetic investigationsHER-2/erbBEnergetics of S-Adenosylmethionine Synthetase Catalysis †
McQueney M, Anderson K, Markham G. Energetics of S-Adenosylmethionine Synthetase Catalysis †. Biochemistry 2000, 39: 4443-4454. PMID: 10757994, DOI: 10.1021/bi992876s.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceBinding SitesCatalysisComputer SimulationDiphosphatesEscherichia coliFluorescenceHydrolysisIsomerismKineticsLigandsMethionineMethionine AdenosyltransferaseOxygenOxygen IsotopesPhosphatesPolyphosphatesS-AdenosylmethionineSolventsThermodynamicsTitrimetryWaterConceptsFree energy profilesSubstrate bindingLoop movementEnergy profilesFormation of AdoMetS-adenosylmethionineChemical interconversion stepPre-steady-state kineticsS-adenosylmethionine synthetaseProduct releaseP(i) complexEquilibrium binding measurementsEnzyme-catalyzed reactionsAdoMet formationBiological alkylating agentsConcentration of substrateFormation reactionCrystallographic studiesEnzyme turnoverEquilibrium constantsCatalyze formationRate constantsInterconversion stepActive siteBinding energy
1999
The Catalytic Mechanism of EPSP Synthase Revisited †
Lewis J, Johnson K, Anderson K. The Catalytic Mechanism of EPSP Synthase Revisited †. Biochemistry 1999, 38: 7372-7379. PMID: 10353849, DOI: 10.1021/bi9830258.Peer-Reviewed Original ResearchMeSH Keywords3-Phosphoshikimate 1-CarboxyvinyltransferaseAlkyl and Aryl TransferasesAmino Acid SubstitutionBinding SitesCatalysisChromatography, High Pressure LiquidEscherichia coliFreezingKineticsMutagenesis, Site-DirectedNuclear Magnetic Resonance, BiomolecularPhosphoenolpyruvateProtonsSubstrate SpecificityConceptsEPSP synthaseEnzyme intermediateKinetic competenceSingle-turnover experimentsSubstrate to productSolid-state NMRSolid-state NMR studiesEnzyme assaysEnzyme reaction pathwaySDS-PAGECatalytic mechanismDegrees CSpeciesEnzymeIntermediate speciesNMR studiesSide productsCharacterized reaction productsSample preparationDisappearance of substrateSynthaseReaction productsFormation of productsBreakdown productsReaction pathways
1998
Catalytic Mechanism of Kdo8P Synthase: Transient Kinetic Studies and Evaluation of a Putative Reaction Intermediate †
Liang P, Lewis J, Anderson K, Kohen A, D'Souza F, Benenson Y, Baasov T. Catalytic Mechanism of Kdo8P Synthase: Transient Kinetic Studies and Evaluation of a Putative Reaction Intermediate †. Biochemistry 1998, 37: 16390-16399. PMID: 9819231, DOI: 10.1021/bi981374w.Peer-Reviewed Original ResearchConceptsTransient kinetic studiesKDO8P synthaseRapid chemical quench experimentsIntermediate 2Chemical quench experimentsKinetic studiesBeta-pyranose formPutative reaction intermediatesChemical synthesisNMR spectroscopySynthetic 2Anomeric phosphatesReaction intermediatesCatalytic pathwayReaction pathwaysEnzyme catalysisCatalytic mechanismTurnover conditionsMechanistic pathwaysPutative reactionsReactionPhosphate hydrolysisSubstrate activityCorresponding control experimentsAlternate substratesSubstrate Channeling and Domain−Domain Interactions in Bifunctional Thymidylate Synthase−Dihydrofolate Reductase †
Liang P, Anderson K. Substrate Channeling and Domain−Domain Interactions in Bifunctional Thymidylate Synthase−Dihydrofolate Reductase †. Biochemistry 1998, 37: 12195-12205. PMID: 9724533, DOI: 10.1021/bi9803168.Peer-Reviewed Original ResearchConceptsDHFR active siteActive siteTS active siteCrystal structureTransient kinetic analysisEnzyme active siteBifunctional TS-DHFRProtein surfaceTS-DHFRKinetics of substrateReductase enzymeSingle polypeptide chainKinetic analysisDihydrofolateThymidylate synthasePolypeptide chainSubstrateEnzymeStructureDomain-domain interactionsSpecies of protozoaInteractionKineticsL. majorChainKinetic Reaction Scheme for the Dihydrofolate Reductase Domain of the Bifunctional Thymidylate Synthase−Dihydrofolate Reductase from Leishmania major †
Liang P, Anderson K. Kinetic Reaction Scheme for the Dihydrofolate Reductase Domain of the Bifunctional Thymidylate Synthase−Dihydrofolate Reductase from Leishmania major †. Biochemistry 1998, 37: 12206-12212. PMID: 9724534, DOI: 10.1021/bi9803170.Peer-Reviewed Original ResearchConceptsThymidylate synthase-dihydrofolate reductaseKinetic reaction schemeCatalytic activityDihydrofolate reductaseBifunctional enzymeReaction schemeBifunctional thymidylate synthase-dihydrofolate reductaseE. coli enzymeSynthase-dihydrofolate reductaseSteady-state turnoverDihydrofolate reductase domainState kinetic methodsSingle polypeptide chainEnzyme dihydrofolate reductaseSpecies of protozoaReaction pathwaysRelease of productsColi enzymeParasite Leishmania majorMonofunctional formsDihydrofolate reductase activityReductase domainConformational changesKinetic stepsPolypeptide chain
1997
Detection and Identification of Transient Enzyme Intermediates Using Rapid Mixing, Pulsed-Flow Electrospray Mass Spectrometry †
Paiva A, Tilton R, Crooks G, Huang L, Anderson K. Detection and Identification of Transient Enzyme Intermediates Using Rapid Mixing, Pulsed-Flow Electrospray Mass Spectrometry †. Biochemistry 1997, 36: 15472-15476. PMID: 9398276, DOI: 10.1021/bi971883i.Peer-Reviewed Original ResearchMeSH Keywords3-Phosphoshikimate 1-CarboxyvinyltransferaseAlkyl and Aryl TransferasesCatalysisMass SpectrometryConceptsTetrahedral intermediateElectrospray ionization ion trap mass spectrometerIon trap mass spectrometerNegative ion mass spectraElectrospray ionization mass spectrometryCollision-induced dissociationEnzyme intermediateIon mass spectraTrap mass spectrometerIonization mass spectrometryEnzyme reaction intermediatesElectrospray ionizationDaughter ionsSubsecond time scaleEnzyme active siteReaction intermediatesAtomic mass unitsMass spectraMass spectrometerChemical quench studiesQuenching studiesMass spectrometryRapid mixing deviceQuenching methodActive sitePre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †
Cane D, Chiu H, Liang P, Anderson K. Pre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †. Biochemistry 1997, 36: 8332-8339. PMID: 9204880, DOI: 10.1021/bi963018o.Peer-Reviewed Original ResearchConceptsChemical catalysisReaction pathwaysRapid chemical quench methodsActive siteSteady-state catalytic rateSingle turnover reactionsRate constant kcatEnzyme active siteNerolidyl diphosphateDeuterium isotope effectSingle-turnover experimentsSingle turnover rateState kinetic analysisTurnover reactionsDetection limitCatalytic rateOverall reactionSteady-state releaseIsotope effectRate-limiting stepState kineticsCatalysisReactionQuench methodSynthase reaction
1994
Detection and characterization of a phospholactoyl-enzyme adduct in the reaction catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase, MurZ.
Brown E, Marquardt J, Lee J, Walsh C, Anderson K. Detection and characterization of a phospholactoyl-enzyme adduct in the reaction catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase, MurZ. Biochemistry 1994, 33: 10638-45. PMID: 8075064, DOI: 10.1021/bi00201a010.Peer-Reviewed Original ResearchConceptsUDP-N-acetylglucosamineUDP-GlcNAcAbsence of UDP-GlcNAcChemical quench analysisPresence of UDP-GlcNAcSingle-turnover conditionsBinding constantsPeptidoglycan biosynthesisSolution NMRC-2Enzyme nucleophilePeptide of molecular weightStoichiometric labelingConsistent with catalysisRemoval of small moleculesE. coliAdductsSmall moleculesMurZEnzyme adductNon-covalentlySDS-PAGEM ureaLabeled peptidesEnzyme
1988
A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics.
Anderson K, Sikorski J, Johnson K. A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics. Biochemistry 1988, 27: 7395-406. PMID: 3061457, DOI: 10.1021/bi00419a034.Peer-Reviewed Original ResearchConceptsPhosphoenol pyruvateBurst of product formationPre-steady-state burstQuantitation of reaction productsTransient-state kinetic analysisEnzyme-bound intermediateShikimate 3-phosphateSingle turnover experimentsPre-steady-stateSubstrate trapping experimentsRelease of substratesEquilibrium constantsSynthase reactionExcess enzymeBinding rateAbsence of phosphatePyruvateReverse reactionEnzymeTurnover experimentsEnzymatic reactionsKinetic competenceEnzyme concentrationFormation of productsConcentration of phosphate