2008
C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors
Hunter R, Younis Y, Muhanji C, Curtin T, Naidoo K, Petersen M, Bailey C, Basavapathruni A, Anderson K. C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors. Bioorganic & Medicinal Chemistry 2008, 16: 10270-10280. PMID: 18996020, PMCID: PMC2639753, DOI: 10.1016/j.bmc.2008.10.048.Peer-Reviewed Original ResearchConceptsThiourea derivativesHI-236C-2 arylationC-2 oxygenStructure-activity profilePhenyl ringAnti-HIV activityNNRTI pocketC-2Drug designCell-free RT assaysDocking modelThioureaDerivativesInhibitory activityBifunctional inhibitorsImproved leadsPhenylAutoDockDockingRingCompoundsPocketSpatial characteristicsMT-2 cell cultures
2006
Developing novel nonnucleoside HIV-1 reverse transcriptase inhibitors: beyond the butterfly.
Basavapathruni A, Anderson K. Developing novel nonnucleoside HIV-1 reverse transcriptase inhibitors: beyond the butterfly. Current Pharmaceutical Design 2006, 12: 1857-65. PMID: 16724952, DOI: 10.2174/138161206776873617.Peer-Reviewed Original ResearchConceptsNonnucleoside reverse transcriptase inhibitorsReverse transcriptase inhibitorsTranscriptase inhibitorsHuman immunodeficiency virus type 1 infectionResistance to nonnucleoside reverse transcriptase inhibitorsTreatment of human immunodeficiency virus type 1 infectionType 1 infectionFood and Drug AdministrationU.S. Food and Drug AdministrationCombination therapyDevelopment of resistanceMechanism of actionHIV-1 reverse transcriptase inhibitorsDrug AdministrationNonnucleosideNonnucleoside HIV-1 reverse transcriptase inhibitorNonnucleoside inhibitorsFeatures of inhibitionPotential new inhibitorsInhibitorsAmino acid substitutionsBiochemical featuresMolecular mechanismsNew inhibitorsAcid substitutions
1991
Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism
Anderson K, Miles E, Johnson K. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. Journal Of Biological Chemistry 1991, 266: 8020-8033. PMID: 1902468, DOI: 10.1016/s0021-9258(18)92934-0.Peer-Reviewed Original ResearchConceptsIndole-3-glycerol phosphateTryptophan synthaseProtein conformationAlpha 2 beta 2 complexReaction of serineAbsence of serineBeta siteFormation of tryptophanAlpha siteSteady-state turnoverActive siteAccumulation of indoleAlpha reactionSubstitution of cysteineSubstrate channelingBeta reactionBeta subunitMetabolic intermediatesSerineAlpha subunitQuench-flowProtein fluorescenceTurnover experimentsProteinTryptophan release
1990
"Kinetic competence" of the 5-enolpyruvoylshikimate-3-phosphate synthase tetrahedral intermediate.
Anderson K, Johnson K. "Kinetic competence" of the 5-enolpyruvoylshikimate-3-phosphate synthase tetrahedral intermediate. Journal Of Biological Chemistry 1990, 265: 5567-5572. PMID: 2180929, DOI: 10.1016/s0021-9258(19)39398-6.Peer-Reviewed Original ResearchObservation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site.
Anderson K, Sammons R, Leo G, Sikorski J, Benesi A, Johnson K. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Biochemistry 1990, 29: 1460-5. PMID: 2334707, DOI: 10.1021/bi00458a017.Peer-Reviewed Original ResearchConceptsEnzyme active siteTetrahedral intermediateFormation of pyruvateActive siteEnzyme sitesComparison of quenchingReaction of enzymeTime of incubationTetrahedral centerCompound giving riseReaction pathwaysEnzymatic hydrolysisPeak assignmentsEnzymeNMR experimentsTernary complexNMR measurementsSide productsRate of formationSpectroscopic probesLong time of incubationNMRSpeciesTriethylamineCovalent adducts
1988
A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics.
Anderson K, Sikorski J, Johnson K. A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics. Biochemistry 1988, 27: 7395-406. PMID: 3061457, DOI: 10.1021/bi00419a034.Peer-Reviewed Original ResearchConceptsPhosphoenol pyruvateBurst of product formationPre-steady-state burstQuantitation of reaction productsTransient-state kinetic analysisEnzyme-bound intermediateShikimate 3-phosphateSingle turnover experimentsPre-steady-stateSubstrate trapping experimentsRelease of substratesEquilibrium constantsSynthase reactionExcess enzymeBinding rateAbsence of phosphatePyruvateReverse reactionEnzymeTurnover experimentsEnzymatic reactionsKinetic competenceEnzyme concentrationFormation of productsConcentration of phosphate