2012
Active site residues critical for flavin binding and 5,6‐dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB
Yu T, Mok K, Kennedy K, Valton J, Anderson K, Walker G, Taga M. Active site residues critical for flavin binding and 5,6‐dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB. Protein Science 2012, 21: 839-849. PMID: 22528544, PMCID: PMC3403419, DOI: 10.1002/pro.2068.Peer-Reviewed Original ResearchConceptsConserved residuesFlavin mononucleotideReduced catalytic functionPurified mutant proteinsBacterium Sinorhizobium melilotiActive site residuesReduced flavin mononucleotideFlavin isoalloxazine ringCatalytic residuesMutant proteinsFlavin bindingDMB synthesisStructure-function relationshipsActive siteEnzyme familyGenetic screeningSite residuesMutant formsLower axial ligandBound flavinCatalytic functionMutantsEnzyme assaysIsoalloxazine ringBluB
2003
Characterization of Novel Reverse Transcriptase and Other RNA-associated Catalytic Activities by Human DNA Polymerase γ IMPORTANCE IN MITOCHONDRIAL DNA REPLICATION*
Murakami E, Feng J, Lee H, Hanes J, Johnson K, Anderson K. Characterization of Novel Reverse Transcriptase and Other RNA-associated Catalytic Activities by Human DNA Polymerase γ IMPORTANCE IN MITOCHONDRIAL DNA REPLICATION*. Journal Of Biological Chemistry 2003, 278: 36403-36409. PMID: 12857740, DOI: 10.1074/jbc.m306236200.Peer-Reviewed Original ResearchConceptsMtDNA genomeMtDNA replicationPol gammaInitiation of mtDNA replicationRNA-primed DNA synthesisHuman mitochondrial DNA polymeraseMitochondrial DNA polymeraseReverse transcriptionDNA synthesis activityPhysiologically relevant ratesMitochondrial DNARibonucleotide incorporationProofreading activitySingle ribonucleotidesHeteroduplex intermediatesRibonucleotide triphosphatesRNA templateDNA primersDNA polymeraseReverse transcriptaseDNA excisionMtDNAAccessory subunitsDNA synthesisEnzymatic pathways
2002
The Kinetic Mechanism of the Human Bifunctional Enzyme ATIC (5-Amino-4-imidazolecarboxamide Ribonucleotide Transformylase/Inosine 5′-Monophosphate Cyclohydrolase) A SURPRISING LACK OF SUBSTRATE CHANNELING*
Bulock K, Beardsley G, Anderson K. The Kinetic Mechanism of the Human Bifunctional Enzyme ATIC (5-Amino-4-imidazolecarboxamide Ribonucleotide Transformylase/Inosine 5′-Monophosphate Cyclohydrolase) A SURPRISING LACK OF SUBSTRATE CHANNELING*. Journal Of Biological Chemistry 2002, 277: 22168-22174. PMID: 11948179, DOI: 10.1074/jbc.m111964200.Peer-Reviewed Original ResearchConceptsCyclohydrolase reactionProduction of inosine monophosphateRelease of tetrahydrofolateSteady-state kinetic techniquesStopped-flow absorbanceBifunctional enzymeActive siteBifunctional proteinSubstrate channelingInosine 5'-monophosphateCyclohydrolaseEnzymatic activityChemotherapeutic targetEnzyme reaction pathwayInosine monophosphateKinetic mechanismFormyltransferaseProteinEnzymeKinetic analysisPathwayKinetic advantageKinetic evidenceKinetic techniquesRibonucleotides
1998
Catalytic Mechanism of Kdo8P Synthase: Transient Kinetic Studies and Evaluation of a Putative Reaction Intermediate †
Liang P, Lewis J, Anderson K, Kohen A, D'Souza F, Benenson Y, Baasov T. Catalytic Mechanism of Kdo8P Synthase: Transient Kinetic Studies and Evaluation of a Putative Reaction Intermediate †. Biochemistry 1998, 37: 16390-16399. PMID: 9819231, DOI: 10.1021/bi981374w.Peer-Reviewed Original ResearchConceptsTransient kinetic studiesKDO8P synthaseRapid chemical quench experimentsIntermediate 2Chemical quench experimentsKinetic studiesBeta-pyranose formPutative reaction intermediatesChemical synthesisNMR spectroscopySynthetic 2Anomeric phosphatesReaction intermediatesCatalytic pathwayReaction pathwaysEnzyme catalysisCatalytic mechanismTurnover conditionsMechanistic pathwaysPutative reactionsReactionPhosphate hydrolysisSubstrate activityCorresponding control experimentsAlternate substrates
1996
Intersubunit Communication in Tryptophan Synthase by Carbon-13 and Fluorine-19 REDOR NMR †
McDowell L, Lee M, McKay R, Anderson K, Schaefer J. Intersubunit Communication in Tryptophan Synthase by Carbon-13 and Fluorine-19 REDOR NMR †. Biochemistry 1996, 35: 3328-3334. PMID: 8605170, DOI: 10.1021/bi9518297.Peer-Reviewed Original ResearchConceptsProton dipolar decouplingMagic angle spinningLocal electric field gradientsElectric field gradientIsotropic shiftsLigand bindingChemical shiftsNMR spectraConformational gatingEnzyme tryptophan synthaseBeta subunitCarbon-13Dipolar decouplingTryptophan synthaseMother liquorResolved linesConformational rearrangementsBinding of serineNMRLigandField gradientEnzyme complexIntersubunit communicationTyrosine residuesSubunit
1995
Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex.
Sammons R, Gruys K, Anderson K, Johnson K, Sikorski J. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex. Biochemistry 1995, 34: 6433-40. PMID: 7756274, DOI: 10.1021/bi00019a024.Peer-Reviewed Original ResearchConceptsEPSP synthaseTernary complexShikimate 3-phosphateSteady-state kineticsEnzyme active siteTransition-state analogSubstrate turnoverSynthase reactionTransition-state inhibitorsEnzymeAssociated with PEPUncompetitive inhibitorBinding resultsSynthaseActive siteFluorescence titration experimentsShikimateOxonium ionsTurnoverInteraction of glyphosateTitration experimentsExpression of Human Cyclophilin‐40 and the Effect of the His141→Trp Mutation on Catalysis and Cyclosporin A Binding
Hoffmann K, Kakalis L, Anderson K, Armitage I, Handschumacher R. Expression of Human Cyclophilin‐40 and the Effect of the His141→Trp Mutation on Catalysis and Cyclosporin A Binding. The FEBS Journal 1995, 229: 188-193. PMID: 7744028, DOI: 10.1111/j.1432-1033.1995.0188l.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid IsomerasesBase SequenceBinding SitesCarrier ProteinsCyclophilin DCyclophilinsCyclosporineEnzyme ActivationEscherichia coliHumansMagnetic Resonance SpectroscopyModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedPeptidylprolyl IsomeraseProtein BindingRecombinant ProteinsConceptsCyP-40Isomerase activityPeptidyl-prolyl cis-trans isomerase activityHuman cyclophilin-40PGEX-3X expression vectorSite-directed mutagenesisMutant proteinsCyclophilin 40Intrinsic isomerase activityNMR difference spectroscopySuccinyl-AlaExpression vectorHistidine residuesEscherichia coliTryptophan residuesProteinCyclophilinMolecular modellingAla-ProResiduesGel filtrationWeak affinityBindingHigh affinityAffinity matrix
1990
"Kinetic competence" of the 5-enolpyruvoylshikimate-3-phosphate synthase tetrahedral intermediate.
Anderson K, Johnson K. "Kinetic competence" of the 5-enolpyruvoylshikimate-3-phosphate synthase tetrahedral intermediate. Journal Of Biological Chemistry 1990, 265: 5567-5572. PMID: 2180929, DOI: 10.1016/s0021-9258(19)39398-6.Peer-Reviewed Original Research
1988
Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements.
Anderson K, Sikorski J, Johnson K. Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry 1988, 27: 1604-10. PMID: 3284585, DOI: 10.1021/bi00405a032.Peer-Reviewed Original ResearchConceptsBinding of substratesBinary complexShikimate 3-phosphateStopped-flow fluorescence methodsDissociation constantFree enzymeGlyphosate bindingS3P bindingInhibitor bindingProtein fluorescenceKinetics of bindingTernary complexEnzymeStopped-flowFluorescence measurementsBindingFluorescence titrationSaturating concentrationsS3PEquilibrium fluorescence measurements