2000
An analysis of the catalytic cycle of HIV-1 reverse transcriptase: opportunities for chemotherapeutic intervention based on enzyme inhibition.
Furman P, Painter G, Anderson K. An analysis of the catalytic cycle of HIV-1 reverse transcriptase: opportunities for chemotherapeutic intervention based on enzyme inhibition. Current Pharmaceutical Design 2000, 6: 547-67. PMID: 10788596, DOI: 10.2174/1381612003400777.Peer-Reviewed Original ResearchConceptsCatalytic cycleIntrinsic binding affinityHIV-1 reverse transcriptaseCatalytic complexChemical catalysisBinding affinityCatalysisMolecular forcesReverse transcriptase inhibitorsAllosteric siteClasses of approved drugsNon-nucleoside reverse transcriptase inhibitorsTranscriptase inhibitorsNucleoside reverse transcriptase inhibitorsSite of inhibitionEnzyme inhibitionReverse transcriptaseAlternative substratesEnzyme
1997
Pre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †
Cane D, Chiu H, Liang P, Anderson K. Pre-Steady-State Kinetic Analysis of the Trichodiene Synthase Reaction Pathway †. Biochemistry 1997, 36: 8332-8339. PMID: 9204880, DOI: 10.1021/bi963018o.Peer-Reviewed Original ResearchConceptsChemical catalysisReaction pathwaysRapid chemical quench methodsActive siteSteady-state catalytic rateSingle turnover reactionsRate constant kcatEnzyme active siteNerolidyl diphosphateDeuterium isotope effectSingle-turnover experimentsSingle turnover rateState kinetic analysisTurnover reactionsDetection limitCatalytic rateOverall reactionSteady-state releaseIsotope effectRate-limiting stepState kineticsCatalysisReactionQuench methodSynthase reaction