2019
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut
Park J, Levic DS, Sumigray KD, Bagwell J, Eroglu O, Block CL, Eroglu C, Barry R, Lickwar CR, Rawls JF, Watts SA, Lechler T, Bagnat M. Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell 2019, 51: 7-20.e6. PMID: 31474562, PMCID: PMC6783362, DOI: 10.1016/j.devcel.2019.08.001.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportAnimalsApoptosis Regulatory ProteinsDietary ProteinsDisease Models, AnimalEnterocytesFemaleGastrointestinal MicrobiomeGene DeletionGene Expression Regulation, DevelopmentalIleumIntestinal AbsorptionIntestinesKwashiorkorLigandsLysosomesMaleMembrane ProteinsMiceReceptors, Cell SurfaceZebrafishZebrafish ProteinsConceptsFluid-phase endocytosisEndocytic machineryTrans-cellular transportLuminal protein digestionVertebrate gutLarval zebrafishCritical developmental stagesStomachless fishMolecular mechanismsVertebrate growthProtein uptakeDevelopmental stagesIntracellular digestionProtein digestionConditional deletionStunted growthIntestinal cellsOral acquisitionDab2Dietary proteinSevere protein malnutritionDigestive functionNeonatal mammalsProteinMalnutrition syndrome
2018
Cellular Dynamics Driving Elongation of the Gut
Sumigray K, Lechler T. Cellular Dynamics Driving Elongation of the Gut. Developmental Cell 2018, 46: 127-128. PMID: 30016614, DOI: 10.1016/j.devcel.2018.06.027.Peer-Reviewed Original ResearchMorphogenesis and Compartmentalization of the Intestinal Crypt
Sumigray KD, Terwilliger M, Lechler T. Morphogenesis and Compartmentalization of the Intestinal Crypt. Developmental Cell 2018, 45: 183-197.e5. PMID: 29689194, PMCID: PMC5987226, DOI: 10.1016/j.devcel.2018.03.024.Peer-Reviewed Original ResearchConceptsRac1 null miceAdult mammalian intestineCell shape changesProgenitor cellsStem cell nicheGene networksCrypt morphogenesisCrypt progenitor cellsEssential regulatorMammalian intestineCell nicheGenetic analysisUnexpected roleApical constrictionNiche formationHemidesmosomal adhesionCrypt developmentTissue architectureMouse cryptsMorphogenesisAbsorptive villiNull miceIntestinal cryptsQuantitative morphometricsShape changesRap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment
Bonello TT, Perez-Vale KZ, Sumigray KD, Peifer M. Rap1 acts via multiple mechanisms to position Canoe and adherens junctions and mediate apical-basal polarity establishment. Development 2018, 145: dev157941. PMID: 29361565, PMCID: PMC5825837, DOI: 10.1242/dev.157941.Peer-Reviewed Original ResearchMeSH KeywordsAdherens JunctionsAnimalsAnimals, Genetically ModifiedCell PolarityDrosophila melanogasterDrosophila ProteinsFemaleGastrulationGene Knockdown TechniquesGuanine Nucleotide Exchange FactorsIntracellular Signaling Peptides and ProteinsMaleModels, BiologicalProtein Interaction Domains and MotifsProtein TransportRNA InterferenceShelterin ComplexTelomere-Binding ProteinsConceptsApical-basal polarityPolarity establishmentMembrane localizationEpithelial apical-basal polarityAdherens junction positioningBazooka/Par3Adherens junction assemblyMost animal tissuesSmall GTPase Rap1Polarity initiationApical retentionNascent junctionsRA domainJunction assemblyAdherens junctionsTricellular junctionsPolarized cellsGTPase Rap1Macromolecular assembliesApical activationRap1Spatial organizationAnimal tissuesMultiple mechanismsEstablishment model