2024
Redefining intestinal stemness: The emergence of a new ISC population
Li M, Sumigray K. Redefining intestinal stemness: The emergence of a new ISC population. Cell 2024, 187: 2900-2902. PMID: 38848673, DOI: 10.1016/j.cell.2024.04.021.Peer-Reviewed Original Research
2023
Generation and Manipulation of Rat Intestinal Organoids.
Zagoren E, Santos A, Ameen N, Sumigray K. Generation and Manipulation of Rat Intestinal Organoids. Journal Of Visualized Experiments 2023 PMID: 37427951, DOI: 10.3791/65343.Peer-Reviewed Original ResearchAntibiotic-induced microbial depletion enhances murine small intestinal epithelial growth in a serotonin-dependent manner
Salvi P, Shaughnessy M, Sumigray K, Cowles R. Antibiotic-induced microbial depletion enhances murine small intestinal epithelial growth in a serotonin-dependent manner. AJP Gastrointestinal And Liver Physiology 2023, 325: g80-g91. PMID: 37158470, DOI: 10.1152/ajpgi.00113.2022.Peer-Reviewed Original ResearchConceptsSerotonin activitySERT protein expressionSerotonin potentiationEpithelial proliferationSerotonin transporterEndogenous serotoninVillus heightMicrobial depletionIntestinal epithelial growthProtein expressionEpithelial growthSerotonin-dependent mechanismIntestinal villus heightSmall intestine resultsIntestinal surface areaSmall intestinal villiSmall intestinal cryptsIntestinal pathologyPara-chlorophenylalanineISC numbersSerotonin synthesisIntestinal homeostasisEpithelial expressionMouse modelAnimal models
2022
Maf family transcription factors are required for nutrient uptake in the mouse neonatal gut
Bara A, Chen L, Ma C, Underwood J, Moreci R, Sumigray K, Sun T, Diao Y, Verzi M, Lechler T. Maf family transcription factors are required for nutrient uptake in the mouse neonatal gut. Development 2022, 149 PMID: 36504079, PMCID: PMC10112929, DOI: 10.1242/dev.201251.Peer-Reviewed Original ResearchConceptsNutrient uptakeTranscription factorsMaf family transcription factorsMajor transcriptional changesFamily transcription factorsLoss of Blimp1Transcription factor MafBMaf proteinsCell fateTranscriptional regulatorsTranscriptional changesRNA-seqMaster regulatorEnterocyte genesFatty acid oxidationGene expressionPeroxisome numberAdult intestineMetabolic pathwaysMolecular componentsSubsequent degradationMaf factorsC-MafSimilar defectsIntestinal enterocytes
2019
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut
Park J, Levic DS, Sumigray KD, Bagwell J, Eroglu O, Block CL, Eroglu C, Barry R, Lickwar CR, Rawls JF, Watts SA, Lechler T, Bagnat M. Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell 2019, 51: 7-20.e6. PMID: 31474562, PMCID: PMC6783362, DOI: 10.1016/j.devcel.2019.08.001.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportAnimalsApoptosis Regulatory ProteinsDietary ProteinsDisease Models, AnimalEnterocytesFemaleGastrointestinal MicrobiomeGene DeletionGene Expression Regulation, DevelopmentalIleumIntestinal AbsorptionIntestinesKwashiorkorLigandsLysosomesMaleMembrane ProteinsMiceReceptors, Cell SurfaceZebrafishZebrafish ProteinsConceptsFluid-phase endocytosisEndocytic machineryTrans-cellular transportLuminal protein digestionVertebrate gutLarval zebrafishCritical developmental stagesStomachless fishMolecular mechanismsVertebrate growthProtein uptakeDevelopmental stagesIntracellular digestionProtein digestionConditional deletionStunted growthIntestinal cellsOral acquisitionDab2Dietary proteinSevere protein malnutritionDigestive functionNeonatal mammalsProteinMalnutrition syndrome
2018
Morphogenesis and Compartmentalization of the Intestinal Crypt
Sumigray KD, Terwilliger M, Lechler T. Morphogenesis and Compartmentalization of the Intestinal Crypt. Developmental Cell 2018, 45: 183-197.e5. PMID: 29689194, PMCID: PMC5987226, DOI: 10.1016/j.devcel.2018.03.024.Peer-Reviewed Original ResearchConceptsRac1 null miceAdult mammalian intestineCell shape changesProgenitor cellsStem cell nicheGene networksCrypt morphogenesisCrypt progenitor cellsEssential regulatorMammalian intestineCell nicheGenetic analysisUnexpected roleApical constrictionNiche formationHemidesmosomal adhesionCrypt developmentTissue architectureMouse cryptsMorphogenesisAbsorptive villiNull miceIntestinal cryptsQuantitative morphometricsShape changes
2015
The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine
Zhou K, Sumigray KD, Lechler T. The Arp2/3 complex has essential roles in vesicle trafficking and transcytosis in the mammalian small intestine. Molecular Biology Of The Cell 2015, 26: 1995-2004. PMID: 25833710, PMCID: PMC4472011, DOI: 10.1091/mbc.e14-10-1481.Peer-Reviewed Original ResearchConceptsArp2/3 complexVesicle traffickingCell type-specific phenotypesCortical F-actinF-actin assemblyEssential roleMammalian small intestineF-actin filamentsCell polarityEndolysosomal systemEssential functionsF-actinCortical poolCell migrationCultured cellsIntestinal developmentTraffickingIntestinal epitheliumPhenotypeWide arrayComplexesComplex functionsTranscytosisLipid absorptionTranscytosis of IgG
2014
Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption
Sumigray K, Zhou K, Lechler T. Cell-Cell Adhesions and Cell Contractility Are Upregulated upon Desmosome Disruption. PLOS ONE 2014, 9: e101824. PMID: 25006807, PMCID: PMC4090201, DOI: 10.1371/journal.pone.0101824.Peer-Reviewed Original ResearchConceptsAdherens junctionsMyosin IIAAdhesion structuresAnti-Dsg3 antibodiesCell-cell adhesion structuresCell adhesion structuresCell-cell adhesionMyosin II activityDesmosomal protein desmoplakinDesmosome functionTransmembrane componentBarrier functionClaudin genesGenetic disordersSignificant increaseMouse keratinocytesCell contractilityDisruption resultsPosttranslational changesTight junctionsII activity
2013
FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes
Foote HP, Sumigray KD, Lechler T. FRAP Analysis Reveals Stabilization of Adhesion Structures in the Epidermis Compared to Cultured Keratinocytes. PLOS ONE 2013, 8: e71491. PMID: 23977053, PMCID: PMC3747223, DOI: 10.1371/journal.pone.0071491.Peer-Reviewed Original ResearchConceptsAdherens junctionsAdhesion structuresCell-cell adhesion structuresAdherens junction protein E-cadherinJunction protein E-cadherinCell-cell junctionsE-cadherinProtein E-cadherinDesmosomal protein desmoplakinZO-1Tight junctionsTissue morphogenesisTissue maintenanceFRAP analysisAdhesion functionProtein ZO-1Photobleaching experimentsProper developmentTight junction protein ZO-1Fluorescence recoveryCultured cellsDynamics of adhesionEpithelial tissuesCurrent understandingCell cultures
2012
Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation
Sumigray KD, Foote HP, Lechler T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. Journal Of Cell Biology 2012, 199: 513-525. PMID: 23091070, PMCID: PMC3483132, DOI: 10.1083/jcb.201206143.Peer-Reviewed Original ResearchConceptsReorganization of microtubulesAdherens junctionsNoncentrosomal microtubulesCortical microtubulesCell adhesionCell-cell junctionsMyosin II recruitmentType II myosinMost cell typesDisruption of microtubulesMicrotubule cytoskeletonCell cortexEpidermal cell adhesionMyosin IITight junction functionMyosin IIAEpidermal cellsPhysiological roleBarrier activityCell typesMicrotubulesJunction functionDifferentiating epidermisChemical barrierCell sheetsDesmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium
Sumigray KD, Lechler T. Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium. Molecular Biology Of The Cell 2012, 23: 792-799. PMID: 22238362, PMCID: PMC3290639, DOI: 10.1091/mbc.e11-11-0923.Peer-Reviewed Original ResearchConceptsDesmosomal protein desmoplakinProper cell-cell adhesionCell adhesionSimple epitheliaCell adhesion structuresApical junctional regionCell-cell adhesionTissue-specific functionsFunction of desmosomesKeratin filament networkTight junctionsKeratin organizationAdherens junctionsTissue homeostasisIntestinal epitheliumAdhesion structuresFilament networkCanonical functionFilament localizationKeratin filamentsMicrovilli lengthMicrovillus structureStratified epitheliumDesmoplakinDesmosomes
2011
Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis
Sumigray KD, Chen H, Lechler T. Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. Journal Of Cell Biology 2011, 194: 631-642. PMID: 21844209, PMCID: PMC3160577, DOI: 10.1083/jcb.201104009.Peer-Reviewed Original ResearchMeSH Keywords1-Alkyl-2-acetylglycerophosphocholine EsteraseAlpha CateninAnimalsCarrier ProteinsCell DifferentiationCell ProliferationCells, CulturedDesmoplakinsDesmosomesEpidermisFluorescent Antibody TechniqueKeratinocytesMiceMice, KnockoutMicrotubule-Associated ProteinsMicrotubulesPermeabilityProtein TransportRecombinant Fusion ProteinsTransfectionConceptsDesmosomal protein desmoplakinCortical microtubule organizationCentrosomal proteinsMicrotubule organizationCell cortexMicrotubule reorganizationCell-cell adhesion structuresPenetrant perinatal lethalityDramatic defectsDesmosome stabilityCytoskeletal networkAdhesion structuresPerinatal lethalityUnexpected roleSingle isoformDesmosomal componentsBarrier activityCell typesDesmosomal proteinsEpidermal differentiationKeratin filamentsIntermediate filamentsProteinLIS1Specific subset