Featured Publications
A Comparison between Mouse, In Silico, and Robot Odor Plume Navigation Reveals Advantages of Mouse Odor Tracking
Gumaste A, Coronas-Samano G, Hengenius J, Axman R, Connor EG, Baker KL, Ermentrout B, Crimaldi JP, Verhagen JV. A Comparison between Mouse, In Silico, and Robot Odor Plume Navigation Reveals Advantages of Mouse Odor Tracking. ENeuro 2020, 7: eneuro.0212-19.2019. PMID: 31924732, PMCID: PMC7004486, DOI: 10.1523/eneuro.0212-19.2019.Peer-Reviewed Original ResearchConceptsOdor localizationArduino RobotMinimal algorithmLow complexityTemporal modelNavigationOdor sourceLocalization of odorsComplexityRobust performanceAlgorithmChaotic environmentOdor-based navigationSame environmentEnvironmental complexityEnvironmentRobotPerformanceFast movementsArduinoComplex strategiesSuccessful performanceChaotic natureModelOrthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. NeuroImage 2020, 212: 116664. PMID: 32087375, PMCID: PMC9362851, DOI: 10.1016/j.neuroimage.2020.116664.Peer-Reviewed Original ResearchConceptsRat olfactory bulbOlfactory bulbWhole olfactory bulbOlfactory receptor neuronsFunctional MRINasal cavityRetronasal stimuliGlomerular sheetDorsal-medial regionsDelivery routeRetronasal stimulationSimilar response amplitudesGlomerular activityFMRI activation mapsSame odorReceptor neuronsDorsal regionNeural responsesOdor representationsLateral regionsSame odorantOrthonasalUnderlie differencesResponse amplitudeResponse patternsSpatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb
Baker KL, Vasan G, Gumaste A, Pieribone VA, Verhagen JV. Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb. PLOS Biology 2019, 17: e3000409. PMID: 31532763, PMCID: PMC6768483, DOI: 10.1371/journal.pbio.3000409.Peer-Reviewed Original ResearchPerception of Odors Linked to Precise Timing in the Olfactory System
Rebello MR, McTavish TS, Willhite DC, Short SM, Shepherd GM, Verhagen JV. Perception of Odors Linked to Precise Timing in the Olfactory System. PLOS Biology 2014, 12: e1002021. PMID: 25514030, PMCID: PMC4267717, DOI: 10.1371/journal.pbio.1002021.Peer-Reviewed Original Research
2023
Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb
James S, Sanggaard S, Akif A, Mishra S, Sanganahalli B, Blumenfeld H, Verhagen J, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. Cerebrovascular And Brain Metabolism Reviews 2023, 43: 1891-1904. PMID: 37340791, PMCID: PMC10676132, DOI: 10.1177/0271678x231183887.Peer-Reviewed Original ResearchConceptsVasodilatory responseCerebral cortexNeurovascular couplingOlfactory bulbNeuronal activityBrief sensory stimuliRegional neurovascular couplingStimulus-induced activityHypercapnia challengeVascular toneNeuronal deactivationHemodynamic responseNeuronal excitabilityNeuronal responsesCalcium transientsBrain functionHemodynamic signalsSensory stimuliVasodilationHypercapniaCortexMiceCareful appraisalStimuliMetabolic wasteOdor encoding by signals in the olfactory bulb
Verhagen J, Baker K, Vasan G, Pieribone V, Rolls E. Odor encoding by signals in the olfactory bulb. Journal Of Neurophysiology 2023, 129: 431-444. PMID: 36598147, PMCID: PMC9925169, DOI: 10.1152/jn.00449.2022.Peer-Reviewed Original ResearchConceptsOlfactory bulbGlomerular responseMouse dorsalPresynaptic inputsLateral olfactory bulbSet of odorsGlomeruliOlfactory systemOdor identityOdor informationSniff onsetResponse latencyBroad tuningBulbStimulus identityLittle informationPopulationResponseEarly stagesTemporal encodingIndependent responses
2022
Fluorescently-tagged magnetic protein nanoparticles for high-resolution optical and ultra-high field magnetic resonance dual-modal cerebral angiography
Mishra S, Herman P, Crair M, Constable R, Walsh J, Akif A, Verhagen J, Hyder F. Fluorescently-tagged magnetic protein nanoparticles for high-resolution optical and ultra-high field magnetic resonance dual-modal cerebral angiography. Nanoscale 2022, 14: 17770-17788. PMID: 36437785, PMCID: PMC9850399, DOI: 10.1039/d2nr04878g.Peer-Reviewed Original ResearchConceptsProtein nanoparticlesParamagnetic iron oxide nanoparticlesIron oxide nanoparticlesMagnetic resonance imaging (MRI) contrastRelaxivity ratioOxide nanoparticlesRapid renal clearanceNanoparticlesMRI propertiesImaging contrastMRI contrastCitric acidNeuroscience applicationsFluorescent dyeBlood biochemical assaysUnambiguous detectionRelaxivityCerebral angiographyDyePlatformMajor blood vesselsBiochemical assaysTechnologyBrain capillariesFluorescence angiographyThalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations
Sanganahalli BG, Thompson GJ, Parent M, Verhagen JV, Blumenfeld H, Herman P, Hyder F. Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations. PLOS ONE 2022, 17: e0267916. PMID: 35522646, PMCID: PMC9075615, DOI: 10.1371/journal.pone.0267916.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusVentral posterior medialVentral posterior lateralThalamic activationFunctional MRIPosterior medial thalamic nucleusMedial thalamic nucleiSensory stimuliLateral geniculate nucleusPost-mortem humanOlfactory stimuliHigh-field functional MRIField functional MRIWhisker stimuliDeep brain regionsRat thalamusThalamic nucleiGeniculate nucleusMediodorsal nucleusRat brainInferior colliculusThalamusDifferent sensory stimuliCortical activationCortical activity
2016
The Habituation/Cross‐Habituation Test Revisited: Guidance from Sniffing and Video Tracking
Coronas-Samano G, Ivanova AV, Verhagen JV. The Habituation/Cross‐Habituation Test Revisited: Guidance from Sniffing and Video Tracking. Neural Plasticity 2016, 2016: 9131284. PMID: 27516910, PMCID: PMC4969543, DOI: 10.1155/2016/9131284.Peer-Reviewed Original Research
2015
Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping
Sanganahalli BG, Rebello MR, Herman P, Papademetris X, Shepherd GM, Verhagen JV, Hyder F. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping. NeuroImage 2015, 126: 208-218. PMID: 26631819, PMCID: PMC4733588, DOI: 10.1016/j.neuroimage.2015.11.048.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingHigh-resolution functional magnetic resonance imagingPost-synaptic activityPre-synaptic inputOlfactory bulb glomeruliFunctional imaging signalsWide-field calcium imagingMagnetic resonance imagingHemodynamic eventsAnesthetized ratsGlomerular layerNeuronal circuitryGlomerular clustersGlomerular patternNeuropil regionsCalcium imagingDye imagingResonance imagingActivity patternsDeoxyhemoglobin contrastGlomerular activity patternsGlomerular sheetGlomerular networkGlomeruliDirect Behavioral and Neurophysiological Evidence for Retronasal Olfaction in Mice
Rebello MR, Kandukuru P, Verhagen JV. Direct Behavioral and Neurophysiological Evidence for Retronasal Olfaction in Mice. PLOS ONE 2015, 10: e0117218. PMID: 25675095, PMCID: PMC4326425, DOI: 10.1371/journal.pone.0117218.Peer-Reviewed Original ResearchConceptsOlfactory bulbMouse's abilityAdditional animal modelsHead-fixed miceConcentration-dependent mannerAnesthetized ratsAwake miceRetronasal odorantsRetronasal odorCalcium responseAnimal modelsTransgenic miceMiceRatsRetronasal olfactionGo behavioral taskRetronasal smellLick spoutFood flavor perceptionNeurophysiological evidenceBehavioral tasksHuman flavor perceptionFood selectionOlfactionBulbectomy
2005
The primate amygdala: Neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods
Kadohisa M, Verhagen J, Rolls E. The primate amygdala: Neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience 2005, 132: 33-48. PMID: 15780464, DOI: 10.1016/j.neuroscience.2004.12.005.Peer-Reviewed Original ResearchConceptsAmygdala neuronsOral stimuliPrimate amygdalaFood intakeResponsive neuronsPathophysiological processesTaste representationsNeuronsFat textureAppetitive responsesStimulus-reinforcement learningTaste of foodNeuronal representationsAmygdalaIntakeFatty acidsFlavor of foodFundamental evidenceFood selectionStimuliBehavioral responsesFood textureFoodCapsaicinBrain
2004
Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture
Kadohisa M, Rolls E, Verhagen J. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience 2004, 127: 207-221. PMID: 15219683, DOI: 10.1016/j.neuroscience.2004.04.037.Peer-Reviewed Original ResearchConceptsOrbitofrontal cortexOral temperatureCortical areasSingle neuronsSomatosensory cortical areasPrimate cortical areasPrimate orbitofrontal cortexPalatability of foodResponsive neuronsMacaque orbitofrontal cortexSite of convergenceFirst evidenceNeuronal responsesCold stimuliNeuronal levelNeuronsC. TwentyCapsaicinDegrees C. TwentyCortexPrimary tastesNeuronal representationsDegrees CStimuliTuning profiles
2000
Taste as a factor in the management of nutrition
Scott T, Verhagen J. Taste as a factor in the management of nutrition. Nutrition 2000, 16: 874-885. PMID: 11054592, DOI: 10.1016/s0899-9007(00)00423-8.Peer-Reviewed Original Research
1996
Reduction of lipoic acid by lipoamide dehydrogenase
Biewenga G, Dorstijn M, Verhagen J, Haenen G, Bast A. Reduction of lipoic acid by lipoamide dehydrogenase. Biochemical Pharmacology 1996, 51: 233-238. PMID: 8573188, DOI: 10.1016/0006-2952(95)02124-8.Peer-Reviewed Original Research