2015
Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness
McKay SE, Yan W, Nouws J, Thormann MJ, Raimundo N, Khan A, Santos-Sacchi J, Song L, Shadel GS. Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. American Journal Of Pathology 2015, 185: 3132-3140. PMID: 26552864, PMCID: PMC5801480, DOI: 10.1016/j.ajpath.2015.08.014.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsApoptosisDeafnessDisease Models, AnimalDNA, MitochondrialEvoked Potentials, Auditory, Brain StemHair Cells, Auditory, InnerMice, Inbred C57BLMice, KnockoutMice, TransgenicMitochondrial DiseasesMutationOrgan of CortiReaction TimeSignal TransductionSpiral GanglionStria VascularisTranscription FactorsConceptsAMP kinaseReactive oxygen species-mediated activationTranscription factor E2F1A1555G mutationAuditory pathologyHair cellsTFB1MHearing loss phenotypeRRNA geneAMPK-α1AMPK activityProlonged wave I latencyLoss phenotypeMitochondrial pathologyNonsyndromic deafnessTransgenic mouse strainWave I latencySpiral ganglion neuronsProgressive hearing lossMitochondrial deafnessPotential therapeutic valueDNA causeG mutationOuter hair cellsI latency
2014
Chloride-driven Electromechanical Phase Lags at Acoustic Frequencies Are Generated by SLC26a5, the Outer Hair Cell Motor Protein
Santos-Sacchi J, Song L. Chloride-driven Electromechanical Phase Lags at Acoustic Frequencies Are Generated by SLC26a5, the Outer Hair Cell Motor Protein. Biophysical Journal 2014, 107: 126-133. PMID: 24988347, PMCID: PMC4119270, DOI: 10.1016/j.bpj.2014.05.018.Peer-Reviewed Original Research
1992
On the frequency limit and phase of outer hair cell motility: effects of the membrane filter
Santos-Sacchi J. On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. Journal Of Neuroscience 1992, 12: 1906-1916. PMID: 1578277, PMCID: PMC6575887, DOI: 10.1523/jneurosci.12-05-01906.1992.Peer-Reviewed Original Research