2016
Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancy
2014
Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance
Strohbehn G, Coman D, Han L, Ragheb RR, Fahmy TM, Huttner AJ, Hyder F, Piepmeier JM, Saltzman WM, Zhou J. Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance. Journal Of Neuro-Oncology 2014, 121: 441-449. PMID: 25403507, PMCID: PMC4323763, DOI: 10.1007/s11060-014-1658-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBrain NeoplasmsConvectionDrug Delivery SystemsFerric CompoundsGlioblastomaHumansImage Processing, Computer-AssistedLactic AcidMagnetic Resonance ImagingNanoparticlesNeuroimagingPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerRatsRats, Sprague-DawleyConceptsBrain-penetrating nanoparticlesSuperparamagnetic iron oxideEfficient deliveryDrug-loaded nanoparticlesDistribution of nanoparticlesTransverse relaxivityPLGA nanoparticlesNanoparticlesConvection-enhanced deliveryDelivery platformFuture clinical applicationsUniversal tumor recurrenceClinical translationSignal attenuationDetection modalitiesIron oxideSame morphologyParticle distributionDeliveryGroundbreaking approachClinical applicationRelevant volumesRelaxivityTreatment of GBMOxide
2013
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, Zhang Y, Sullivan DJ, Piepmeier JM, Saltzman WM. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 11751-11756. PMID: 23818631, PMCID: PMC3718184, DOI: 10.1073/pnas.1304504110.Peer-Reviewed Original Research
2010
Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma†
Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK, Group F. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma†. Neuro-Oncology 2010, 12: 871-881. PMID: 20511192, PMCID: PMC2940677, DOI: 10.1093/neuonc/nop054.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAgedAntineoplastic AgentsBrain NeoplasmsCarmustineCatheters, IndwellingConvectionDecanoic AcidsDrug Administration RoutesExotoxinsFemaleGlioblastomaHumansInterleukin-13Kaplan-Meier EstimateMagnetic Resonance ImagingMaleMiddle AgedNeoplasm Recurrence, LocalPolyestersRecombinant Fusion ProteinsYoung AdultConceptsConvection-enhanced deliveryCintredekin besudotoxGliadel wafersMedian survivalTumor resectionGlioblastoma multiformeEfficacy-evaluable populationAdverse event profileHealth-related qualityPhase III evaluationTime of randomizationEvaluable populationTertiary endpointsPrimary endpointAdult patientsBaseline characteristicsFirst recurrenceOverall survivalPulmonary embolismActive comparatorTreatment armsIL13-PE38QQRIntraparenchymal catheterSurvival differencesGBM patients
2006
New methods for direct delivery of chemotherapy for treating brain tumors.
Sawyer AJ, Piepmeier JM, Saltzman WM. New methods for direct delivery of chemotherapy for treating brain tumors. The Yale Journal Of Biology And Medicine 2006, 79: 141-52. PMID: 17940624, PMCID: PMC1994797.Peer-Reviewed Original ResearchConceptsConvection-enhanced deliveryBrain tumorsPrimary malignant brain tumorLocal deliveryBlood-brain barrierMalignant brain tumorsStandard chemotherapeutic drugsBrain cancer treatmentAnti-cancer therapyMedian survivalInfusion siteSevere formMalignant cellsNew delivery strategiesChemotherapy drugsChemotherapyDiagnostic imagingTumorsChemotherapeutic drugsCancer treatmentDrugsInvasive cellsSource of drugsDelivery strategiesBrain
1996
In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor.
Piepmeier J, Rabidou N, Schold S, Bitonti A, Prakash N, Bush T. In vitro and in vivo inhibition of glioblastoma and neuroblastoma with MDL101731, a novel ribonucleoside diphosphate reductase inhibitor. Cancer Research 1996, 56: 359-61. PMID: 8542592.Peer-Reviewed Original ResearchConceptsMalignant brain tumorsMedian survivalControl animalsAthymic miceBrain tumorsReductase inhibitorsHuman malignant brain tumorsHuman glioblastomaDays of treatmentSK-N-MCConcentration-dependent inhibitionTumor regressionIntracerebral implantsIntracerebral xenograftsXenograft modelGlioblastoma cell linesVivo inhibitionPotent antiproliferative activityNeuroblastomaGlioblastomaSurvivalCell linesXenograftsNanomolar concentrationsTumors