2017
Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation
Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Annals Of Vascular Surgery 2017, 41: 225-234. PMID: 28163173, PMCID: PMC5411319, DOI: 10.1016/j.avsg.2016.09.014.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaArteriovenous Shunt, SurgicalGene Expression RegulationHeme Oxygenase-1Hydrogen PeroxideHyperplasiaHypoxia-Inducible Factor 1, alpha SubunitMaleMembrane ProteinsMice, Inbred C57BLNADPH Oxidase 2NeointimaOxidative StressReactive Oxygen SpeciesSignal TransductionTime FactorsTyrosineVascular Endothelial Growth Factor AVascular PatencyVena Cava, InferiorConceptsHeme oxygenase-1Arteriovenous fistulaAVF maturationNOX-2HIF-1αOxidative stressHypoxia-inducible factor 1 (HIF-1) expressionSham-operated micePoor clinical resultsHIF-1α immunoreactivityInferior vena cavaArteriovenous fistula maturationVascular endothelial growth factorHypoxia-inducible factor-1 (HIF-1) pathwayFactor-1 expressionEndothelial growth factorHIF-1 pathwayHuman AVF maturationQuantitative polymerase chain reactionOxidative stress increasesAortocaval fistulaFistula maturationVena cavaClinical resultsPolymerase chain reaction
2008
Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature
Chyou S, Ekland EH, Carpenter AC, Tzeng TC, Tian S, Michaud M, Madri JA, Lu TT. Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature. The Journal Of Immunology 2008, 181: 3887-3896. PMID: 18768843, PMCID: PMC2562332, DOI: 10.4049/jimmunol.181.6.3887.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factorEndothelial cell proliferationLymph nodesPeripheral node addressinEndothelial cellsReticular stromal cellsVEGF levelsCell proliferationImmune functionVEGF expressionStromal cellsBeta-receptor blockadeLymph node endothelial cellsLymph node vasculatureEndothelial growth factorLTbetaR signalsReceptor blockadeImmune responseParacrine regulatorMedullary cordsLTbetaR stimulationLymphUp-regulating VEGF expressionImportant mediatorVascular maintenance
2006
Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study
Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF‐ and BDNF‐mediated cross‐talk between neural stem cells and endothelial cells: An in vitro study. Journal Of Neuroscience Research 2006, 84: 1656-1668. PMID: 17061253, DOI: 10.1002/jnr.21087.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnimals, NewbornBrainBrain-Derived Neurotrophic FactorCell CommunicationCell ProliferationCells, CulturedCoculture TechniquesEndothelial CellsEnzyme-Linked Immunosorbent AssayGreen Fluorescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMicroscopy, Electron, TransmissionModels, BiologicalNerve Tissue ProteinsNeuronsNitric OxidePlatelet Endothelial Cell Adhesion Molecule-1Stem CellsVascular Endothelial Growth Factor AConceptsBrain-derived neurotrophic factorBrain-derived endothelial cellsNeural stem cellsNeurovascular nicheTube formationResident neural stem cellsEndothelial cellsCell-derived soluble factorsVascular endothelial growth factorStem cellsNitric oxide scavengerEndothelial growth factorPaucity of dataExogenous NO donorNeurotrophic factorStem cell modulationVascular tube formationCell modulationENOS activationNO donorSoluble factorsGrowth factorNeuronal differentiationReciprocal modulationInduction
2004
A null mutation of Hhex results in abnormal cardiac development,defective vasculogenesis and elevated Vegfa levels
Hallaq H, Pinter E, Enciso J, McGrath J, Zeiss C, Brueckner M, Madri J, Jacobs HC, Wilson CM, Vasavada H, Jiang X, Bogue CW. A null mutation of Hhex results in abnormal cardiac development,defective vasculogenesis and elevated Vegfa levels. Development 2004, 131: 5197-5209. PMID: 15459110, DOI: 10.1242/dev.01393.Peer-Reviewed Original ResearchConceptsEpithelial-mesenchymal transformationVEGFA levelsVentricular septal defectVascular endothelial growth factorDefective vasculogenesisEndothelial growth factorEndocardial cushionsInhibitor of VEGFVascular developmentTract abnormalitiesSeptal defectSFlt-1Right ventricleNormal liverVentral foregut endodermNormal cardiovascular developmentReceptor 1Abnormal cardiac developmentGrowth factorNull mutationVentral foregutAberrant developmentCompact myocardiumAV explantsE8.5-9.0
2003
Vascular Endothelial Growth Factor Expression, β-Catenin Tyrosine Phosphorylation, and Endothelial Proliferative Behavior: A Pathway for Transformation?
Ilan N, Tucker A, Madri JA. Vascular Endothelial Growth Factor Expression, β-Catenin Tyrosine Phosphorylation, and Endothelial Proliferative Behavior: A Pathway for Transformation? Laboratory Investigation 2003, 83: 1105-1115. PMID: 12920240, DOI: 10.1097/01.lab.0000083531.84403.8b.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, BlockingAntigens, CD1Beta CateninCell DivisionCell Transformation, NeoplasticCytoskeletal ProteinsEndothelial Growth FactorsEndothelium, VascularExtracellular Matrix ProteinsHemangioendotheliomaHumansIntercellular Signaling Peptides and ProteinsLymphokinesPhosphorylationTrans-ActivatorsTumor Cells, CulturedTyrosineUmbilical VeinsVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-1Vascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth FactorsConceptsVascular endothelial growth factorEOMA cellsCD1 levelsFlk-1Vascular endothelial growth factor (VEGF) expressionExogenous vascular endothelial growth factorEndogenous vascular endothelial growth factorEndothelial cell tumorsGrowth factor expressionEndothelial growth factorTyrosine phosphorylationNuclear beta-catenin localizationNuclear localizationProliferative behaviorΒ-catenin tyrosine phosphorylationHuman endothelial cellsComponent expression levelsCD1 expressionCell tumorsCommon tumorsImmune complex kinase assayEndothelial cell transformationMitogen-activated protein kinase activationPrimary human endothelial cellsAutocrine loopMaternal Diabetes: Effects on Embryonic Vascular Development—A Vascular Endothelial Growth Factor-A-mediated Process
Madri JA, Enciso J, Pinter E. Maternal Diabetes: Effects on Embryonic Vascular Development—A Vascular Endothelial Growth Factor-A-mediated Process. Pediatric And Developmental Pathology 2003, 6: 334-341. PMID: 14692647, DOI: 10.1007/s10024-003-5051-9.Peer-Reviewed Original ResearchConceptsEmbryonic lethal phenotypeGrowth factorVascular endothelial growth factorEndothelial growth factorEpithelial-mesenchymal transformationCardiovascular patterningAberrant organogenesisLethal phenotypeVasculogenesis/angiogenesisPhosphorylation stateTargeted mutationsYolk sacMajor congenital malformationsFactor 1Major birth defectsGrowth factor-1OrganogenesisAdhesion moleculesConceptus culturesMaternal diabetesDiabetic miceCardiovascular abnormalitiesVitelline circulationCongenital malformationsBirth defectsElevated glucose inhibits VEGF-A–mediated endocardial cushion formation
Enciso JM, Gratzinger D, Camenisch TD, Canosa S, Pinter E, Madri JA. Elevated glucose inhibits VEGF-A–mediated endocardial cushion formation. Journal Of Cell Biology 2003, 160: 605-615. PMID: 12591918, PMCID: PMC2173755, DOI: 10.1083/jcb.200209014.Peer-Reviewed Original ResearchMeSH KeywordsAngiogenesis Inducing AgentsAnimalsCell MovementCell SizeCells, CulturedCulture TechniquesDipeptidesEmbryo, MammalianEndocardial Cushion DefectsFemaleGlucoseHeartMaleMatrix Metalloproteinase 2MiceMorphogenesisMyocardiumPlatelet Endothelial Cell Adhesion Molecule-1Protease InhibitorsRecombinant Fusion ProteinsVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-1ConceptsEpithelial-mesenchymal transformationEndocardial cushion formationPlatelet endothelial cell adhesion molecule-1Cushion formationPECAM-1-positive endothelial cellsSingle cell motilityMMP-2 expressionMorphogenesis resultsHigh glucose-induced inhibitionCell motilityEndothelial cellsBlocks invasionMatrix metalloproteinase-2 expressionEndocardial cellsExtracellular matrixLack of invasionEndothelial cell adhesion molecule-1Mesenchymal cellsMyocardial VEGFMMP-2 inductionMetalloproteinase-2 expressionVEGF-A165ExpressionGrowth factorVascular endothelial growth factor
2002
Paracrine and Autocrine Functions of Neuronal Vascular Endothelial Growth Factor (VEGF) in the Central Nervous System*
Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR. Paracrine and Autocrine Functions of Neuronal Vascular Endothelial Growth Factor (VEGF) in the Central Nervous System*. Journal Of Biological Chemistry 2002, 277: 11410-11415. PMID: 11777931, DOI: 10.1074/jbc.m111085200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCerebral CortexEndothelial Growth FactorsImmunohistochemistryLymphokinesMAP Kinase Kinase Kinase 1MiceNeuronsPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationProtein Serine-Threonine KinasesRatsReceptor Protein-Tyrosine KinasesReceptors, Growth FactorReceptors, Vascular Endothelial Growth FactorSignal TransductionVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsVascular endothelial growth factorNeuronal vascular endothelial growth factorExtracellular signal-regulated protein kinaseSignal-regulated protein kinaseCentral nervous systemFlk-1Inhibition of phosphatidylinositolPost-mitotic neuronsTyrosine phosphorylation levelsInhibition of MEKEndothelial growth factorAutocrine functionGrowth factorEmbryonic mouse forebrainNervous systemMaintenance of neuronsProtein kinaseTyrosine phosphorylationNovel functionNeuronal culturesPhosphorylation levelsSpecific inhibitorExpression of VEGFExogenous additionEmbryonic cortical neurons
2001
Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro
Chow J, Ogunshola O, Fan S, Li Y, Ment L, Madri J. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Research 2001, 130: 123-132. PMID: 11557101, DOI: 10.1016/s0165-3806(01)00220-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornApoptosisAstrocytesCell CommunicationCell Culture TechniquesCell DivisionCell HypoxiaCell SurvivalCoculture TechniquesCollagenEndothelial Growth FactorsEndothelium, VascularGelsHypoxia, BrainLymphokinesMitogen-Activated Protein KinasesPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktRatsVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsBrain microvascular endothelial cellsChronic sublethal hypoxiaVascular endothelial growth factorHypoxic conditionsNewborn rat astrocytesMicrovascular endothelial cellsEndothelial growth factorDose-dependent mannerEffects of hypoxiaVEGF receptor 1Mild hypoxic conditionsImportance of VEGFRBE4 cellsRat astrocytesAmount of VEGFSublethal hypoxiaReceptor 1MAPK tyrosine phosphorylationEndothelial cellsGrowth factorRobust inductionVEGFTube formationTube stabilizationExogenous VEGF
2000
Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain
Ogunshola O, Stewart W, Mihalcik V, Solli T, Madri J, Ment L. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Research 2000, 119: 139-153. PMID: 10648880, DOI: 10.1016/s0165-3806(99)00125-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell CountCerebral CortexChronic DiseaseEndothelial Growth FactorsGene Expression Regulation, DevelopmentalGlial Fibrillary Acidic ProteinHypoxia, BrainLymphokinesMicrocirculationNeovascularization, PhysiologicNeurogliaNeuronsPlatelet Endothelial Cell Adhesion Molecule-1RatsRNA, MessengerVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsVascular endothelial growth factorLocalization of VEGFCortical neuronsGlial cellsNeuronal expressionChronic sublethal hypoxiaRat brain cortexAge-matched controlsCortical brain tissueHypoxia-driven angiogenesisPostnatal day 3Endothelial growth factorDensity of vesselsWestern blot analysisHypoxic animalsHypoxic chamberVascular bedNewborn ratsRat brainBrain cortexControl animalsDay 3High neuronal expressionSublethal hypoxiaPostnatal development
1999
PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated β-catenin
Ilan N, Mahooti S, Rimm D, Madri J. PECAM-1 (CD31) functions as a reservoir for and a modulator of tyrosine-phosphorylated β-catenin. Journal Of Cell Science 1999, 112: 3005-3014. PMID: 10462517, DOI: 10.1242/jcs.112.18.3005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCattleCells, CulturedCytoskeletal ProteinsEndothelial Growth FactorsEndothelium, VascularGene ExpressionHumansIn Vitro TechniquesLymphokinesModels, BiologicalNeovascularization, PhysiologicPhosphorylationPlatelet Endothelial Cell Adhesion Molecule-1Protein-Tyrosine KinasesTrans-ActivatorsTransfectionTyrosineVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsTyrosine phosphorylationBeta-catenin tyrosine phosphorylationBeta-catenin nuclear translocationAdherens junction formationProtein tyrosine kinasesPECAM-1 functionsTyrosine phosphorylation levelsCell-cell contactSW480 colon carcinoma cellsEndothelial cell-cell contactsCatenin functionVascular endothelial growth factorCell adhesion moleculeTranscriptional factorsPECAM-1Colon carcinoma cellsTyrosine kinaseGamma cateninMajor substrateJunctional proteinsCytoplasmic levelsPhosphorylation levelsNuclear translocationΒ-cateninCatenin
1997
Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.
Papapetropoulos A, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. Journal Of Clinical Investigation 1997, 100: 3131-3139. PMID: 9399960, PMCID: PMC508526, DOI: 10.1172/jci119868.Peer-Reviewed Original ResearchConceptsHuman umbilical vein endothelial cellsVascular endothelial growth factorPhosphoinositide-3 kinase inhibitorDimensional collagen gelsRegulator of vasculogenesisKinase inhibitorsGrowth of HUVECsGrowth factorExposure of cellsUmbilical vein endothelial cellsEndothelial cellsTyrosine kinaseHuman endothelial cellsVEGF stimulationSynthase proteinK kinaseEndothelial growth factorVein endothelial cellsProtein levelsEC proliferationKinaseHuman ECsDependent formationNO-dependent mannerShort-term stimulationVascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain
Ment L, Stewart W, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, Madri J. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Brain Research 1997, 100: 52-61. PMID: 9174246, DOI: 10.1016/s0165-3806(97)00012-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesCell DivisionCell HypoxiaCells, CulturedCerebral CortexCoculture TechniquesEndothelial Growth FactorsEndothelium, VascularHypoxia, BrainLymphokinesMicrocirculationNeovascularization, PathologicNeovascularization, PhysiologicRatsRats, Sprague-DawleyRNA, MessengerTranscription, GeneticVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsVascular endothelial growth factorEndothelial growth factorVEGF protein levelsExperimental ratsSublethal hypoxiaBrain microvascular endothelial cellsEndothelial cellsGrowth factorChronic sublethal hypoxiaProtein levelsAge-matched controlsMicrovascular endothelial cellsHypoxic pupsHRP studyCortical vesselsImmunohistochemical studyVascular densityAddition of VEGFBeagle pupsNewborn ratsReactive angiogenesisAstrocyte culturesThree-dimensional cocultureRat forebrainVEGF protein