2022
Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study
Baltazar T, Kajave NS, Rodriguez M, Chakraborty S, Jiang B, Skardal A, Kishore V, Pober JS, Albanna MZ. Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study. Journal Of Biomedical Materials Research Part B Applied Biomaterials 2022, 110: 2323-2337. PMID: 35532208, PMCID: PMC11103545, DOI: 10.1002/jbm.b.35080.Peer-Reviewed Original Research
2020
Spontaneous reversal of stenosis in tissue-engineered vascular grafts
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine 2020, 12 PMID: 32238576, PMCID: PMC7478265, DOI: 10.1126/scitranslmed.aax6919.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisChildConstriction, PathologicHumansSheepTissue EngineeringUnited StatesConceptsEarly stenosisInferior venaClinical trialsAppropriate medical monitoringTissue-engineered vascular graftsVascular graftsTEVG stenosisPulmonary arteryCardiac anomaliesClinical managementEarly inflammationHigh incidenceStenosisFontan conduitDrug AdministrationGraft modelReversible narrowingGraftU.S. FoodTranslational researchAngioplastyVenaPatientsSpontaneous reversalTrials
2019
Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells
Baltazar T, Merola J, Catarino C, Xie C, Kirkiles-Smith N, Lee V, Hotta S, Dai G, Xu X, Ferreira FC, Saltzman WM, Pober JS, Karande P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Engineering Part A 2019, 26: 227-238. PMID: 31672103, PMCID: PMC7476394, DOI: 10.1089/ten.tea.2019.0201.Peer-Reviewed Original ResearchConceptsSkin graftsHuman endothelial colony-forming cellsEndothelial cellsHuman endothelial cellsHuman skin graftsEndothelial colony-forming cellsPlacental pericytesGraft survivalCutaneous ulcersAllogeneic cellsHuman foreskin keratinocytesMouse microvesselsImmunodeficient miceHuman pericytesGraftColony-forming cellsVascular structuresWound bedForeskin keratinocytesEpidermal maturationPericytesHuman placental pericytesHuman keratinocytesKeratinocytesType I
2015
Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli
Chang WG, Fornoni A, Tietjen G, Mendez JJ, Niklason LE, Saltzman WM, Pober JS. Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli. Tissue Engineering Part A 2015, 21: 2673-2679. PMID: 26414101, PMCID: PMC4652181, DOI: 10.1089/ten.tea.2015.0060.Peer-Reviewed Original Research
2013
Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation
Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane‐wit D, Saltzman WM, Pober JS. Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation. The FASEB Journal 2013, 28: 908-922. PMID: 24221087, PMCID: PMC3898640, DOI: 10.1096/fj.13-238527.Peer-Reviewed Original ResearchConceptsHuman umbilical vein ECsEndothelial cellsMiR-132MicroRNA-132Cultured human umbilical vein endothelial cellsNumber of microvesselsGrowth factor-induced proliferationHuman umbilical vein endothelial cellsUmbilical vein endothelial cellsEndothelial cell transplantationCultured endothelial cellsEndogenous growth factorsEC transplantationVein endothelial cellsCell transplantationImmunodeficient miceTissue perfusionTransplantationMiR deliveryGrowth factorIntegrin αvβ3Endocytosed nanoparticlesSquare millimeterBiological effectsControl transfectionParacrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials 2013, 34: 8899-8908. PMID: 23973174, PMCID: PMC3839675, DOI: 10.1016/j.biomaterials.2013.08.008.Peer-Reviewed Original ResearchConceptsHuman umbilical vein endothelial cellsParacrine signalsFunctioning of tissuesProper survivalEndothelial cellsUmbilical vein endothelial cellsMolecular signalsRegulated deliveryVein endothelial cellsVessel-like structuresLiving cellsProtein gelsHepatocyte growth factorTherapeutic proteinsParacrine exchangesGrowth factorMicrovascular pericytesProteinAngiogenic proteinsCellsVascular tissue engineeringHUVEC behaviorTissue constructsPericytesLocal environment