2023
Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer’s disease
Datta D, Perone I, Morozov Y, Arellano J, Duque A, Rakic P, van Dyck C, Arnsten A. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer’s disease. Cerebral Cortex 2023, 33: 11501-11516. PMID: 37874022, PMCID: PMC10724870, DOI: 10.1093/cercor/bhad382.Peer-Reviewed Original ResearchConceptsHCN1 channelsTau pathologyGlutamate synapsesEntorhinal cortexCalcium actionInternal calcium releaseEntorhinal cortex stellate cellsDorsolateral prefrontal cortexSusceptible neuronsInitial pathologySelective vulnerabilityEtiological factorsTau phosphorylationStellate cellsAlzheimer's diseaseSpecific neuronsCalcium releasePrefrontal cortexCortexSynapse strengthPathologyCalcium signalingCalbindinDiseaseNeuronsMolecular programs of regional specification and neural stem cell fate progression in macaque telencephalon
Micali N, Ma S, Li M, Kim S, Mato-Blanco X, Sindhu S, Arellano J, Gao T, Shibata M, Gobeske K, Duque A, Santpere G, Sestan N, Rakic P. Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 2023, 382: eadf3786. PMID: 37824652, PMCID: PMC10705812, DOI: 10.1126/science.adf3786.Peer-Reviewed Original Research
2022
Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex
Rash B, Arellano J, Duque A, Rakic P. Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2210967120. PMID: 36574666, PMCID: PMC9910595, DOI: 10.1073/pnas.2210967120.Peer-Reviewed Original ResearchConceptsOuter subventricular zoneSubcortical white matterCerebral cortexWhite matterFormation of gyriPrimate cerebral cortexMammalian cerebral cortexMarkers of proliferationCortical malformationsCortical plateGlial cellsGyral developmentSubventricular zoneCortical neurogenesisFetal developmentVentricular zoneCortical foldingNeuronal progenitorsGyrificationNeuronal growthNeuropil growthPrimary gyriCortexNeurodevelopmental disordersGyrus
2007
Glowing Green Pyramids: A False Positive for Neocortical Neurogenesis Reveals a Novel Neuronal–Microglial Fusion in the Postnatal Brain
Breunig J, Arellano J. Glowing Green Pyramids: A False Positive for Neocortical Neurogenesis Reveals a Novel Neuronal–Microglial Fusion in the Postnatal Brain. Journal Of Neuroscience 2007, 27: 1507-1508. PMID: 17304702, PMCID: PMC6673745, DOI: 10.1523/jneurosci.5475-06.2007.Peer-Reviewed Original Research
2006
Non-synaptic dendritic spines in neocortex
Arellano J, Espinosa A, Fairén A, Yuste R, DeFelipe J. Non-synaptic dendritic spines in neocortex. Neuroscience 2006, 145: 464-469. PMID: 17240073, DOI: 10.1016/j.neuroscience.2006.12.015.Peer-Reviewed Original Research
2002
Spaceflight Induces Changes in the Synaptic Circuitry of the Postnatal Developing Neocortex
DeFelipe J, Arellano J, Merchán-Pérez A, González-Albo M, Walton K, Llinás R. Spaceflight Induces Changes in the Synaptic Circuitry of the Postnatal Developing Neocortex. Cerebral Cortex 2002, 12: 883-891. PMID: 12122037, DOI: 10.1093/cercor/12.8.883.Peer-Reviewed Original ResearchConceptsLayers II/IIISynaptic circuitrySynaptic densityFlight animalsLaminar-specific mannerLower synaptic densityDensity of synapsesDays of spaceflightAsymmetrical synapsesCortical synapsesLayer IVCortical synaptogenesisLong-term spaceflightControl animalsDeveloping NeocortexAdult patternCortical organizationNeocortical circuitrySynapsesGround control animalsMonth periodSignificant differencesFuture long-term spaceflightsAnimalsNeocortical representationsSynaptically Released Acetylcholine Evokes Ca2+Elevations in Astrocytes in Hippocampal Slices
Araque A, Martín E, Perea G, Arellano J, Buño W. Synaptically Released Acetylcholine Evokes Ca2+Elevations in Astrocytes in Hippocampal Slices. Journal Of Neuroscience 2002, 22: 2443-2450. PMID: 11923408, PMCID: PMC6758296, DOI: 10.1523/jneurosci.22-07-02443.2002.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAnimalsAstrocytesCalciumCholinergic FibersDiagonal Band of BrocaElectric StimulationGlutamic AcidHippocampusIn Vitro TechniquesIntracellular FluidNeurons, AfferentNeurotransmitter AgentsPatch-Clamp TechniquesRatsRats, WistarReceptors, GlutamateReceptors, MuscarinicSeptum of BrainSignal TransductionSynapsesConceptsAstrocytic responseIntracellular Ca2Stratum oriens/alveusHippocampal stratum oriensOriens/alveusMuscarinic cholinergic receptorsGlutamate receptor antagonistsGlutamate transporter activityWhole-cell membrane currentsDifferent brain areasLevels of astrocytesCholinergic receptorsHippocampal astrocytesMuscarinic receptorsCholinergic activityReceptor antagonistStratum oriensAcetylcholine actsCholinergic afferentsAxonal inputsHippocampal slicesDiagonal bandGlial cellsTransporter antagonistsBrain slicesMicrostructure of the neocortex: Comparative aspects
DeFelipe J, Alonso-Nanclares L, Arellano J. Microstructure of the neocortex: Comparative aspects. Brain Cell Biology 2002, 31: 299-316. PMID: 12815249, DOI: 10.1023/a:1024130211265.Peer-Reviewed Original ResearchConceptsDifferent cortical areasCortical areasExtrinsic afferent systemsNeocortex of humansInhibitory GABAergic interneuronsDensity of excitatoryNumber of synapsesSpecific cortical circuitsDistinct cortical areasSpiny cellsInhibitory circuitsGABAergic interneuronsInhibitory synapsesNeocortical neuronsNeuronal elementsPyramidal cellsAfferent systemsCortical circuitsNeocortical circuitsCortical tissueNumber of neuronsNeocortexNeuronsExcitatoryBasic microcircuit
2001
Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex
Sánchez C, Arellano J, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra F. Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience 2001, 107: 25-33. PMID: 11744243, DOI: 10.1016/s0306-4522(01)00338-4.Peer-Reviewed Original ResearchConceptsEpileptic patientsMAP2 phosphorylationEpileptiform activityKynurenic acidTemporal lobe epileptic patientsNeuronal cytoskeletonSeizure-like activityTemporal lobe cortexNeuronal cell deathRat hippocampal neuronsProtein 2 phosphorylationNeuronal damageSeizure activityGlutamate receptorsHippocampal neuronsNeuronal activityBiopsy samplesSynaptic plasticityPatientsElectrocorticogram activityNeuronal processesExperimental modelAbnormal patternsImmunocytochemical analysisPhosphorylated epitopesBarrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release
Persico A, Mengual E, Moessner R, Hall S, Revay R, Sora I, Arellano J, DeFelipe J, Giménez-Amaya J, Conciatori M, Marino R, Baldi A, Cabib S, Pascucci T, Uhl G, Murphy D, Lesch K, Keller F. Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal Of Neuroscience 2001, 21: 6862-6873. PMID: 11517274, PMCID: PMC6763105, DOI: 10.1523/jneurosci.21-17-06862.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBiogenic MonoaminesCarrier ProteinsExtracellular SpaceFenclonineGABA Plasma Membrane Transport ProteinsImmunohistochemistryMembrane GlycoproteinsMembrane ProteinsMembrane Transport ProteinsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeurons, AfferentNeuropeptidesOrganic Anion TransportersSerotoninSerotonin AntagonistsSerotonin Plasma Membrane Transport ProteinsSomatosensory CortexSynapsesSynaptic VesiclesThalamusVesicular Biogenic Amine Transport ProteinsVesicular Monoamine Transport ProteinsVibrissaeConceptsVMAT2-KO miceDensity of synapsesKnock-out (KO) miceVesicular monoamine transporterThalamocortical afferentsCerebral cortexSynaptic contactsThalamocortical neuronsKO miceLayer IVBarrel cortexMonoamine releaseNeonatal rodentsBarrel fieldPostnatal growthVesicular releaseSerotonin transporterMonoamine transportersCortexPlasma membrane serotonin transporterSynaptic vesiclesQuantitative electron microscopyMiceComplete absenceReleasePyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex
DeFelipe J, Arellano J, Gómez A, Azmitia E, Muñoz A. Pyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex. The Journal Of Comparative Neurology 2001, 433: 148-155. PMID: 11283956, DOI: 10.1002/cne.1132.Peer-Reviewed Original ResearchConceptsChandelier cell axon terminalsGamma-aminobutyric acidPyramidal cell axonsCerebral cortexPyramidal cellsAxon terminalsCell axonsHuman cerebral cortexDouble-labeling experimentsPowerful inhibitory mechanismChandelier cellsMonkey neocortexGABAergic interneuronsImmunoreactive fibersSerotonin receptorsSerotonin afferentsAxonal specializationsParacrine mannerLayers IISynaptic connectionsImmunocytochemical methodsProximal portionInhibitory mechanismClose appositionConfocal laser microscopy
1999
Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex
Elston G, DeFelipe J, Arellano J, del Carmen Gonzilez-Albo M, Rosa M. Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. Neuroreport 1999, 10: 2975-2979. PMID: 10549808, DOI: 10.1097/00001756-199909290-00019.Peer-Reviewed Original ResearchConceptsPyramidal neuronesLayer VLucifer YellowSomatosensory cortexLayer IIICell bodiesRat primary somatosensory cortexTangential cortical slicesPrimary somatosensory cortexImmunoreactive cell bodiesBasal dendritic fieldsRat somatosensory cortexCombination of antibodiesReceptive field propertiesDendritic territoriesCortical slicesInhibitory modulationDendritic fieldsCortical neuronesIntracellular injectionNeuronesCortexConfocal microscopyFunctional implicationsSlices