2023
Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer’s disease
Datta D, Perone I, Morozov Y, Arellano J, Duque A, Rakic P, van Dyck C, Arnsten A. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer’s disease. Cerebral Cortex 2023, 33: 11501-11516. PMID: 37874022, PMCID: PMC10724870, DOI: 10.1093/cercor/bhad382.Peer-Reviewed Original ResearchConceptsHCN1 channelsTau pathologyGlutamate synapsesEntorhinal cortexCalcium actionInternal calcium releaseEntorhinal cortex stellate cellsDorsolateral prefrontal cortexSusceptible neuronsInitial pathologySelective vulnerabilityEtiological factorsTau phosphorylationStellate cellsAlzheimer's diseaseSpecific neuronsCalcium releasePrefrontal cortexCortexSynapse strengthPathologyCalcium signalingCalbindinDiseaseNeurons
2022
Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex
Rash B, Arellano J, Duque A, Rakic P. Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2210967120. PMID: 36574666, PMCID: PMC9910595, DOI: 10.1073/pnas.2210967120.Peer-Reviewed Original ResearchConceptsOuter subventricular zoneSubcortical white matterCerebral cortexWhite matterFormation of gyriPrimate cerebral cortexMammalian cerebral cortexMarkers of proliferationCortical malformationsCortical plateGlial cellsGyral developmentSubventricular zoneCortical neurogenesisFetal developmentVentricular zoneCortical foldingNeuronal progenitorsGyrificationNeuronal growthNeuropil growthPrimary gyriCortexNeurodevelopmental disordersGyrus
2007
Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus
Andrioli A, Alonso-Nanclares L, Arellano J, DeFelipe J. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience 2007, 149: 131-143. PMID: 17850980, DOI: 10.1016/j.neuroscience.2007.07.029.Peer-Reviewed Original ResearchConceptsNeuronal lossProtein parvalbuminIntractable temporal lobe epilepsyCalcium binding protein parvalbuminParvalbumin-immunoreactive cellsTotal neuronal lossHippocampal neuronal lossParvalbumin-immunoreactive neuronsPV-ir neuronsHuman epileptic hippocampusMesial temporal structuresTemporal lobe epilepsyBinding protein parvalbuminTotal neuronal densityQuantitative stereological methodsAutopsy hippocampiAxonal reorganizationPV-irHippocampal sclerosisEpileptic hippocampusLobe epilepsyNeuronal densityInhibitory circuitsEpileptogenic processGABAergic interneurons
2005
Catecholaminergic Innervation of Pyramidal Neurons in the Human Temporal Cortex
Benavides-Piccione R, Arellano J, DeFelipe J. Catecholaminergic Innervation of Pyramidal Neurons in the Human Temporal Cortex. Cerebral Cortex 2005, 15: 1584-1591. PMID: 15703259, DOI: 10.1093/cercor/bhi036.Peer-Reviewed Original ResearchConceptsHuman temporal cortexPyramidal cellsPyramidal neuronsCatecholaminergic innervationCatecholaminergic afferentsCatecholaminergic fibersTyrosine hydroxylaseTemporal cortexHuman neocortexBasal dendritic regionsBasal dendritic arborsHuman cortical organizationEnzyme tyrosine hydroxylaseHuman cortical tissueDendritic arborsExcitatory inputsCortical functionLayers IIHigher cognitive functionsLayers IIIaCognitive functionDendritic compartmentsCortical tissueCortical organizationLucifer Yellow
2004
CA1 Hippocampal Neuronal Loss in Familial Alzheimer's Disease Presenilin‐1 E280A Mutation Is Related to Epilepsy
Velez‐Pardo C, Arellano J, Cardona‐Gomez P, Del Rio M, Lopera F, De Felipe J. CA1 Hippocampal Neuronal Loss in Familial Alzheimer's Disease Presenilin‐1 E280A Mutation Is Related to Epilepsy. Epilepsia 2004, 45: 751-756. PMID: 15230697, DOI: 10.1111/j.0013-9580.2004.55403.x.Peer-Reviewed Original ResearchConceptsHippocampal neuronal lossNeuronal lossCA1 fieldAlzheimer's diseaseFAD patientsEpileptic seizuresPresenilin-1 E280A mutationMesial temporal lobe structuresAppearance of epilepsyCA1 hippocampal regionNeuronal cell lossSubpopulation of patientsFamilial AD patientsTemporal lobe structuresPresenilin 1 mutationNeuronal depopulationHippocampal sclerosisAD pathologyAD patientsNeurofibrillary tanglesEpilepsy patientsHippocampal regionHippocampal formationPatientsCoronal sections
2003
Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus
Arellano J, Muñoz A, Ballesteros-Yáñez I, Sola R, DeFelipe J. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 2003, 127: 45-64. PMID: 14534159, DOI: 10.1093/brain/awh004.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultCalbindinsCarrier ProteinsDentate GyrusEpilepsy, Temporal LobeFemaleGABA Plasma Membrane Transport ProteinsHippocampusHumansImmunoenzyme TechniquesInterneuronsMaleMembrane ProteinsMembrane Transport ProteinsMiddle AgedNeural Cell Adhesion Molecule L1Organic Anion TransportersParvalbuminsPresynaptic TerminalsS100 Calcium Binding Protein GSialic AcidsTerminology as TopicConceptsCalbindin D-28kChandelier cellsDentate gyrusProtein parvalbuminHippocampal formationSclerotic hippocampusGABAergic circuitsNeuron lossPyramidal layerCalcium-binding protein parvalbuminBasket formationImpairment of GABANormal hippocampal formationHuman epileptic hippocampusTemporal lobe epilepsyCortical pyramidal cellsAxon initial segmentNeural cell adhesion moleculeGABA transporter 1PV-immunoreactiveHippocampal sclerosisClinical characteristicsEpileptic hippocampusLobe epilepsyDifferent hippocampal fields
2002
GABABR1 receptor protein expression in human mesial temporal cortex: Changes in temporal lobe epilepsy
Muñoz A, Arellano J, Defelipe J. GABABR1 receptor protein expression in human mesial temporal cortex: Changes in temporal lobe epilepsy. The Journal Of Comparative Neurology 2002, 449: 166-179. PMID: 12115687, DOI: 10.1002/cne.10287.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyHuman hippocampal formationLayer VHippocampal formationLobe epilepsyB immunoreactivityDentate gyrusPyramidal cellsEpileptic patientsPerirhinal cortexProtein expressionInhibitory synaptic transmissionLarge pyramidal cellsMesial temporal cortexPolymorphic cell layerDeep layer VReceptor protein expressionGranule cell layerCell layerAdjacent cortical structuresB protein expressionHippocampal sclerosisNeuronal lossApical dendritesAmmon's hornPSA-NCAM Immunoreactivity in Chandelier Cell Axon Terminals of the Human Temporal Cortex
Arellano J, DeFelipe J, Muñoz A. PSA-NCAM Immunoreactivity in Chandelier Cell Axon Terminals of the Human Temporal Cortex. Cerebral Cortex 2002, 12: 617-624. PMID: 12003861, DOI: 10.1093/cercor/12.6.617.Peer-Reviewed Original ResearchConceptsChandelier cell axon terminalsPSA-NCAMLayers IIAxon terminalsPlastic changesAdult central nervous systemPSA-NCAM immunoreactivityDouble immunocytochemical stainingHuman temporal cortexHuman entorhinal cortexCentral nervous systemPV-immunoreactiveTemporal neocortexSerotonin receptorsEntorhinal cortexTemporal cortexNervous systemAxonal processesGABA transporterImmunocytochemical stainingGAT-1ParvalbuminNeocortexCortexPresent studyMicrostructure of the neocortex: Comparative aspects
DeFelipe J, Alonso-Nanclares L, Arellano J. Microstructure of the neocortex: Comparative aspects. Brain Cell Biology 2002, 31: 299-316. PMID: 12815249, DOI: 10.1023/a:1024130211265.Peer-Reviewed Original ResearchConceptsDifferent cortical areasCortical areasExtrinsic afferent systemsNeocortex of humansInhibitory GABAergic interneuronsDensity of excitatoryNumber of synapsesSpecific cortical circuitsDistinct cortical areasSpiny cellsInhibitory circuitsGABAergic interneuronsInhibitory synapsesNeocortical neuronsNeuronal elementsPyramidal cellsAfferent systemsCortical circuitsNeocortical circuitsCortical tissueNumber of neuronsNeocortexNeuronsExcitatoryBasic microcircuitThe neuropathology of temporal lobe epilepsy: primary and secondary changes in the cortical circuits and epileptogenicity.
DeFelipe Oroquieta J, Arellano J, Alonso L, Muñoz A. The neuropathology of temporal lobe epilepsy: primary and secondary changes in the cortical circuits and epileptogenicity. Revista De Neurologia 2002, 34: 401-8. PMID: 12040509, DOI: 10.33588/rn.3405.2001403.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyPrimary epileptogenic regionEpileptogenic regionEpileptic activitySynaptic reorganizationLobe epilepsySpecific anatomical connectionsMesial sclerosisNeuronal lossPerilesional areaCommon pathologyInitial lesionCortical circuitsHippocampal formationNeuronal circuitsAnatomical connectionsCortical tissueSecondary changesEpilepsySimilar changesLesionsGliosisEpileptogenicitySclerosisPatients
2001
Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex
Sánchez C, Arellano J, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra F. Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience 2001, 107: 25-33. PMID: 11744243, DOI: 10.1016/s0306-4522(01)00338-4.Peer-Reviewed Original ResearchConceptsEpileptic patientsMAP2 phosphorylationEpileptiform activityKynurenic acidTemporal lobe epileptic patientsNeuronal cytoskeletonSeizure-like activityTemporal lobe cortexNeuronal cell deathRat hippocampal neuronsProtein 2 phosphorylationNeuronal damageSeizure activityGlutamate receptorsHippocampal neuronsNeuronal activityBiopsy samplesSynaptic plasticityPatientsElectrocorticogram activityNeuronal processesExperimental modelAbnormal patternsImmunocytochemical analysisPhosphorylated epitopesNeuropathological Findings in a Patient with Epilepsy and the Parry–Romberg Syndrome
DeFelipe J, Segura T, Arellano J, Merchán A, DeFelipe‐Oroquieta J, Martín P, Maestú F, Cajal S, Sánchez A, Sola R. Neuropathological Findings in a Patient with Epilepsy and the Parry–Romberg Syndrome. Epilepsia 2001, 42: 1198-1203. PMID: 11580770, DOI: 10.1046/j.1528-1157.2001.45800.x.Peer-Reviewed Original ResearchConceptsParry-Romberg syndromeSeizure activityDentate gyrusIntractable temporal lobe epilepsyComplete seizure reliefPolymorph cell layerTemporal lobe epilepsyCause of epilepsyDentate gyrus circuitryNumber of synapsesStandard histopathologic methodsGamma-aminobutyric acidInhibitory basket cellsCell-sparse regionNeuropathologic findingsNeuropathological findingsSeizure reliefAxosomatic synapsesLobe epilepsySurgical interventionElectron microscopic levelMesial structuresEctopic massBasket cellsEntorhinal cortexPyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex
DeFelipe J, Arellano J, Gómez A, Azmitia E, Muñoz A. Pyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex. The Journal Of Comparative Neurology 2001, 433: 148-155. PMID: 11283956, DOI: 10.1002/cne.1132.Peer-Reviewed Original ResearchConceptsChandelier cell axon terminalsGamma-aminobutyric acidPyramidal cell axonsCerebral cortexPyramidal cellsAxon terminalsCell axonsHuman cerebral cortexDouble-labeling experimentsPowerful inhibitory mechanismChandelier cellsMonkey neocortexGABAergic interneuronsImmunoreactive fibersSerotonin receptorsSerotonin afferentsAxonal specializationsParacrine mannerLayers IISynaptic connectionsImmunocytochemical methodsProximal portionInhibitory mechanismClose appositionConfocal laser microscopy