2024
Learning integral operators via neural integral equations
Zappala E, Fonseca A, Caro J, Moberly A, Higley M, Cardin J, Dijk D. Learning integral operators via neural integral equations. Nature Machine Intelligence 2024, 6: 1046-1062. DOI: 10.1038/s42256-024-00886-8.Peer-Reviewed Original ResearchSelf-attentionNon-local operatorsMachine learningModeling complex systemsReal-world dataHigher-dimensional problemsComplex systemsDynamic embeddingsIntegral equationsModel capacitySpatiotemporal dependenciesIntegral operatorsSecond-kind integral equationsIntegral equation solversModeling capabilitiesNonlinear operatorsTheoretical analysisNon-local systemNumerical benchmarksMachineLearningApproximate resultsNavier-StokesEquation solverScalabilityTraumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley M, Cardin J, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cerebral Cortex 2024, 34: bhae038. PMID: 38365273, PMCID: PMC11486687, DOI: 10.1093/cercor/bhae038.Peer-Reviewed Original ResearchConceptsControlled cortical impactTraumatic brain injuryFunctional connectivityDisrupted functional connectivityAssociated with improved cognitionReduced theta powerBrain injuryHuman TBI patientsModel of traumatic brain injuryBehavioral state-dependent changesNetwork connectivity changesFunctional cortical connectivityBrain regionsTheta powerConnectivity changesState-dependent changesCortical impactPeriods of locomotionCortical connectivityTBI patientsRodent modelsECoG activityMotor dysfunctionCortexInjured cortex
2023
The Cousa objective: a long-working distance air objective for multiphoton imaging in vivo
Yu C, Yu Y, Adsit L, Chang J, Barchini J, Moberly A, Benisty H, Kim J, Young B, Heng K, Farinella D, Leikvoll A, Pavan R, Vistein R, Nanfito B, Hildebrand D, Otero-Coronel S, Vaziri A, Goldberg J, Ricci A, Fitzpatrick D, Cardin J, Higley M, Smith G, Kara P, Nielsen K, Smith I, Smith S. The Cousa objective: a long-working distance air objective for multiphoton imaging in vivo. Nature Methods 2023, 21: 132-141. PMID: 38129618, PMCID: PMC10776402, DOI: 10.1038/s41592-023-02098-1.Peer-Reviewed Original ResearchRapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Benisty H, Barson D, Moberly A, Lohani S, Tang L, Coifman R, Crair M, Mishne G, Cardin J, Higley M. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nature Neuroscience 2023, 27: 148-158. PMID: 38036743, PMCID: PMC11316935, DOI: 10.1038/s41593-023-01498-y.Peer-Reviewed Original ResearchConceptsFunctional connectivitySpontaneous behaviorCortical networksCortical network activityTime-varying functional connectivityFunctional magnetic resonanceCerebral cortexAwake miceDynamic functional connectivityAwake animalsNeighboring neuronsPatterned activityDistinct behavioral statesTwo-photon microscopyNeural activityCortical signalsBehavioral statesCortexNetwork activityCortical dynamicsMagnetic resonanceVIP interneurons regulate cortical size tuning and visual perception
Ferguson K, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin J. VIP interneurons regulate cortical size tuning and visual perception. Cell Reports 2023, 42: 113088. PMID: 37682710, PMCID: PMC10618959, DOI: 10.1016/j.celrep.2023.113088.Peer-Reviewed Original ResearchConceptsState-dependent modulationPyramidal neuronsVIP-INsBehavioral state-dependent modulationCortical circuit functionVasoactive intestinal peptidePrimary visual cortexAwake behaving miceIntestinal peptideGABAergic interneuronsVIP interneuronsCortical activityVisual cortexBehaving miceFeature selectivityInterneuronsSensory processingSpecialized populationCircuit functionStimulus sizeActivity altersDiverse populationsModulationPopulationCortexBeyond rhythm – a framework for understanding the frequency spectrum of neural activity
Perrenoud Q, Cardin J. Beyond rhythm – a framework for understanding the frequency spectrum of neural activity. Frontiers In Systems Neuroscience 2023, 17: 1217170. PMID: 37719024, PMCID: PMC10500127, DOI: 10.3389/fnsys.2023.1217170.Peer-Reviewed Original ResearchNeural Integro-Differential Equations
Zappala E, de O. Fonseca A, Moberly A, Higley M, Abdallah C, Cardin J, Van Dijk D. Neural Integro-Differential Equations. Proceedings Of The AAAI Conference On Artificial Intelligence 2023, 37: 11104-11112. DOI: 10.1609/aaai.v37i9.26315.Peer-Reviewed Original ResearchIntegro-differential equationsIntegral operatorsDifferential equationsContinuous dynamical systemsNon-local dynamicsDynamical systemsInitial conditionsEquationsNeural networkTime extrapolationOperatorsIntegralsFundamental problemSuch dynamicsLatent spaceDynamicsNon-local processesBrain activity recordingsBrain dynamicsData scienceDifferential componentsIntegrandGeneralizationTheoryNetworkDevelopmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin J. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Molecular Psychiatry 2023, 28: 3133-3143. PMID: 37069344, PMCID: PMC10618960, DOI: 10.1038/s41380-023-02066-3.Peer-Reviewed Original ResearchConceptsPV interneuronsCortical neuronsCortical circuitsCortical circuit dynamicsCortical GABAergic cellsNRG1/ErbB4Excitatory cortical neuronsParvalbumin-Expressing InterneuronsInhibitory cortical neuronsApical dendritic tuftsActivity of excitatorySecond postnatal weekProper synaptic connectivityLate postnatal developmentState-dependent modulationLoss of ERBB4Excitatory componentGABAergic cellsGABAergic inhibitionSpine densityDendritic tuftsPostnatal weekNormal tuningSynaptic connectivityReceptor ErbB4Putting the brakes on synchrony: VIP interneurons tune visually evoked rhythmic activity
Perrenoud Q, Cardin J. Putting the brakes on synchrony: VIP interneurons tune visually evoked rhythmic activity. Neuron 2023, 111: 297-299. PMID: 36731427, DOI: 10.1016/j.neuron.2023.01.004.Peer-Reviewed Original Research
2022
Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity
Lohani S, Moberly A, Benisty H, Landa B, Jing M, Li Y, Higley M, Cardin J. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nature Neuroscience 2022, 25: 1706-1713. PMID: 36443609, PMCID: PMC10661869, DOI: 10.1038/s41593-022-01202-6.Peer-Reviewed Original ResearchConceptsCortical network activityBehavioral statesCholinergic modulationAnimal's behavioral stateCholinergic signalingAwake miceCortical functionFunctional reorganizationNeuromodulatory influencesDifferent motor behaviorsNeocortical activityAcetylcholineMotor behaviorCortical networksRecent evidenceBrain activityFunctional segregationNeocortexMesoscopic imagingHeterogeneous signalsNetwork activityBehavioral markersBehavioral variablesCircuit dynamicsCholinergicDual-polarity voltage imaging of the concurrent dynamics of multiple neuron types
Kannan M, Vasan G, Haziza S, Huang C, Chrapkiewicz R, Luo J, Cardin J, Schnitzer M, Pieribone V. Dual-polarity voltage imaging of the concurrent dynamics of multiple neuron types. Science 2022, 378: eabm8797. PMID: 36378956, PMCID: PMC9703638, DOI: 10.1126/science.abm8797.Peer-Reviewed Original ResearchOptogenetics
Cardin J. Optogenetics. 2022, 2561-2565. DOI: 10.1007/978-1-0716-1006-0_524.Peer-Reviewed Original Research
2018
Altered hippocampal interneuron activity precedes ictal onset
Miri ML, Vinck M, Pant R, Cardin J. Altered hippocampal interneuron activity precedes ictal onset. ELife 2018, 7: e40750. PMID: 30387711, PMCID: PMC6245730, DOI: 10.7554/elife.40750.Peer-Reviewed Original ResearchConceptsSynaptic inhibitionIctal activityEarly ictal phaseHippocampal interneuron activityLocal circuit interactionsSomatostatin-expressing (SST) interneuronsInhibitory interneuron populationsSeizure inductionGABAergic inhibitionSeizure disorderIctal onsetSource of inhibitionSeizure initiationIctal phaseHippocampal circuitsInterneuron activityInterneuron populationsInterneuron classesFiring patternsInterneuronsElectrophysiological approachesPreictal periodInhibitionParvalbuminOnset
2017
Multiscale optical imaging of cortical activity in mouse
Barson D, Hamodi A, Lur G, Cardin J, Crair M, Higley M. Multiscale optical imaging of cortical activity in mouse. 2017, jtu4a.13. DOI: 10.1364/boda.2017.jtu4a.13.Peer-Reviewed Original Research
2016
Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks
Lur G, Vinck MA, Tang L, Cardin JA, Higley MJ. Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Reports 2016, 14: 2538-2545. PMID: 26972011, PMCID: PMC4805451, DOI: 10.1016/j.celrep.2016.02.050.Peer-Reviewed Original ResearchConceptsNeocortical sensory areasVisual response propertiesPrimary visual cortexVivo calcium imagingDownstream targetsCorticocortical cellsCorticostriatal cellsProjection neuronsRelevant downstream targetsCorticotectal cellsAfferent informationCortical subnetworksCC cellsVisual cortexCalcium imagingSensory areasSubcortical structuresLayer 5CT cellsDistinct subpopulationsSensory informationBroad tuningResponse propertiesCellsFunctional subnetworks
2015
Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology
Furman M, Zhan Q, McCafferty C, Lerner BA, Motelow JE, Meng J, Ma C, Buchanan GF, Witten IB, Deisseroth K, Cardin JA, Blumenfeld H. Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology. Epilepsia 2015, 56: e198-e202. PMID: 26530287, PMCID: PMC4679683, DOI: 10.1111/epi.13220.Peer-Reviewed Original ResearchConceptsFocal limbic seizuresLimbic seizuresCortical functionBrainstem neuronsCortical dysfunctionFocal temporal lobe seizuresOptogenetic stimulationCortical slow-wave activityDepressed cortical functionSubcortical cholinergic neuronsTemporal lobe seizuresLoss of consciousnessPedunculopontine tegmental nucleusAnesthetized rat modelSlow wave activityCortical gamma activitySleep-like stateCholinergic neuronsFocal seizuresArousal networkCholinergic stimulationTegmental nucleusRat modelCortical physiologySeizuresArousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding
Vinck M, Batista-Brito R, Knoblich U, Cardin JA. Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding. Neuron 2015, 86: 740-754. PMID: 25892300, PMCID: PMC4425590, DOI: 10.1016/j.neuron.2015.03.028.Peer-Reviewed Original ResearchConceptsSensory-evoked cortical activityCortical activity patternsLocomotion effectsMouse V1Spontaneous firingLocal field potentialsCortical circuitsCortical activityRunning wheelArea V1Visual responsesPatterns of activityPupil diameterPopulation activityField potentialsMotor feedbackArousalV1Activity patternsArousal levelTemporal patterningComplementary roleMiceActivityOptogenetics
Cardin J. Optogenetics. 2015, 2175-2179. DOI: 10.1007/978-1-4614-6675-8_524.Peer-Reviewed Original Research
2014
Optogenetics
Cardin J. Optogenetics. 2014, 1-5. DOI: 10.1007/978-1-4614-7320-6_524-1.Peer-Reviewed Original Research
2011
Integrated Optogenetic and Electrophysiological Dissection of Local Cortical Circuits In Vivo
Cardin J. Integrated Optogenetic and Electrophysiological Dissection of Local Cortical Circuits In Vivo. Neuromethods 2011, 67: 339-355. DOI: 10.1007/7657_2011_23.Peer-Reviewed Original Research