2022
Zebrafish models of Alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye
Yoon B, Yeung P, Santistevan N, Bluhm L, Kawasaki K, Kueper J, Dubielzig R, Vanoudenhove J, Cotney J, Liao E, Grinblat Y. Zebrafish models of Alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biology Open 2022, 11: bio059189. PMID: 35142342, PMCID: PMC9167625, DOI: 10.1242/bio.059189.Peer-Reviewed Original ResearchConceptsALX geneAnterior neurocraniumZebrafish modelGenetic mechanismsNovel roleAnterior segment formationHomeobox transcription factorCranial neural crestOxidative stress responseParalogous genesConserved roleAnterior segment defectsAbsence of eyesEthanol toxicityTranscription factorsTranscriptomic analysisLineage labelingAlx1Midfacial morphogenesisKey regulatorNeural crestStress responseSegment formationMutantsVascular development
2021
Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment
Pettinato A, Yoo D, VanOudenhove J, Chen Y, Cohn R, Ladha F, Yang X, Thakar K, Romano R, Legere N, Meredith E, Robson P, Regnier M, Cotney J, Murry C, Hinson J. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Reports 2021, 35: 109088. PMID: 33951429, PMCID: PMC8161465, DOI: 10.1016/j.celrep.2021.109088.Peer-Reviewed Original ResearchConceptsCell cycle arrestSarcomere functionHuman cardiomyocyte modelHuman cardiac regenerationInfarcted rat heartsCardiomyocyte engraftmentCell engraftmentReplicative rateRat heartDNA damage responseCardiomyocyte modelCardiac regenerationOxidative metabolismUnclear mechanismsProgressive polyploidizationCyclin B1P53-dependent DNA damage responseEngraftmentP53 activationArrestDamage responseSingle-cell transcriptomicsReplicative arrest
2017
Precocious Phenotypic Transcription‐Factor Expression During Early Development
VanOudenhove J, Medina R, Ghule P, Lian J, Stein J, Zaidi S, Stein G. Precocious Phenotypic Transcription‐Factor Expression During Early Development. Journal Of Cellular Biochemistry 2017, 118: 953-958. PMID: 27591551, PMCID: PMC5336526, DOI: 10.1002/jcb.25723.Peer-Reviewed Original ResearchConceptsPhenotypic transcription factorsTranscription factorsPrecocious expressionRUNX1 transcription factorTranscriptional controlLineage identityGene expressionNovel roleBiological importanceMesenchymal transitionEarly differentiationMesenchymal differentiationTransient upregulationDetailed mechanistic studiesExpressionDifferentiationMechanistic studiesRUNX1RoleUpregulationFurther studies
2016
MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells
Browne G, Dragon J, Hong D, Messier T, Gordon J, Farina N, Boyd J, VanOudenhove J, Perez A, Zaidi S, Stein J, Stein G, Lian J. MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumor Biology 2016, 37: 8825-8839. PMID: 26749280, PMCID: PMC4939137, DOI: 10.1007/s13277-015-4710-6.Peer-Reviewed Original ResearchConceptsMDA-MB-231 cellsBreast cancer progressionMiR-378Breast cancer cellsCancer progressionMMTV-PyMT transgenic mouse modelCancer cellsLuciferase reporter assaysMiRNA replacement therapyMDA-MB-231 human breast cancer cellsBreast cancerTranscription factorsNumerous miRNAsEctopic expressionRegulatory pathwaysUntranslated regionMicroarray profilingReporter assaysHuman breast cancer cellsTriple-negative MDA-MB-231Breast cancer cell line MCF7Human breast cancer cell line MCF7Cell migrationRUNX1 expressionNormal hematopoiesis
2009
Analysis of PKR Structure by Small-Angle Scattering
VanOudenhove J, Anderson E, Krueger S, Cole J. Analysis of PKR Structure by Small-Angle Scattering. Journal Of Molecular Biology 2009, 387: 910-920. PMID: 19232355, PMCID: PMC2663012, DOI: 10.1016/j.jmb.2009.02.019.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsBinding SitesDimerizationEIF-2 KinaseHumansImmunity, InnateModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, QuaternaryProtein Structure, TertiaryRNA, Double-StrandedScattering, Small AngleSequence Homology, Amino AcidX-Ray DiffractionConceptsProtein kinase RDouble-stranded RNATandem double-stranded RNAC-terminal kinase domainN-terminal double-stranded RNAFamily of proteinsInterdomain linker regionAntiviral defense pathwayDefense pathwaysAutophosphorylation reactionKinase domainRNA activatorUnstructured regionsLinker regionFlexible linkerRNAExtended conformationSmall-angle X-ray scatteringDiverse structuresGuinier analysisDistance distribution functionConformationKinaseKey componentX-ray scattering