Jelena Platisa, PhD
Associate Research Scientist of Cellular and Molecular PhysiologyCards
About
Research
Publications
2024
DeepVID v2: self-supervised denoising with decoupled spatiotemporal enhancement for low-photon voltage imaging
Liu C, Lu J, Wu Y, Ye X, Ahrens A, Platisa J, Pieribone V, Chen J, Tian L. DeepVID v2: self-supervised denoising with decoupled spatiotemporal enhancement for low-photon voltage imaging. Neurophotonics 2024, 11: 045007. PMID: 39474199, PMCID: PMC11519979, DOI: 10.1117/1.nph.11.4.045007.Peer-Reviewed Original ResearchDeep learning denoising methodsLeverage temporal informationSelf-supervised denoisingSuperior denoising capabilitiesReal-time inferenceLocal spatial informationSequence of framesVoltage imaging dataDenoising frameworkDenoising methodSignal-to-noise ratioDenoising capabilityExtraction branchDenoising needsBlind pixelsTemporal informationDenoisingGround truthPoisson noiseTemporal performanceCentral frameOffline versionSpatial informationDynamics of neuronal activitySignal-to-noisePlateau depolarizations in spontaneously active neurons detected by calcium or voltage imaging
Milicevic K, Ivanova V, Lovic D, Platisa J, Andjus P, Antic S. Plateau depolarizations in spontaneously active neurons detected by calcium or voltage imaging. Scientific Reports 2024, 14: 22787. PMID: 39367010, PMCID: PMC11452489, DOI: 10.1038/s41598-024-70319-4.Peer-Reviewed Original ResearchConceptsCa2+ transientsAction potentialsSpontaneously active neuronsCalcium imaging studiesCa2+ recordingsNeuronal action potentialsDepolarizing envelopeOptical signalsDendritic Ca2AP firingPlateau depolarizationsPyramidal neuronsMembrane depolarizationPlateau potentialsImaging studiesActive neuronsNeuronal culturesPhoton signaturesImaging modalitiesUP statesIn vivo conditionsNeuronsHalf-widthCa2+Depolarization
2023
High-speed low-light in vivo two-photon voltage imaging of large neuronal populations
Platisa J, Ye X, Ahrens A, Liu C, Chen I, Davison I, Tian L, Pieribone V, Chen J. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations. Nature Methods 2023, 20: 1095-1103. PMID: 36973547, PMCID: PMC10894646, DOI: 10.1038/s41592-023-01820-3.Peer-Reviewed Original ResearchConceptsNeuronal populationsLarge neuronal populationsNeural circuit functionTwo-photon voltage imagingAwake behaving miceCalcium imagingBehaving miceVoltage imagingCircuit functionNeuronsShot noise levelShot-noise limitImagingTwo-photon microscopeKilohertz frame ratesDeep-tissue imagingPopulationVoltage indicatorsField of viewMiceShot noiseTwo-photon voltage imaging denoising by self-supervised learning
Liu C, Platisa J, Ye X, Ahrens A, Chen I, Davison I, Pieribone V, Chen J, Tian L. Two-photon voltage imaging denoising by self-supervised learning. Progress In Biomedical Optics And Imaging 2023, 12365: 1236505-1236505-2. DOI: 10.1117/12.2648122.Peer-Reviewed Original Research
2022
Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight
Platisa J, Zeng H, Madisen L, Cohen LB, Pieribone VA, Storace DA. Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight. Scientific Reports 2022, 12: 1875. PMID: 35115567, PMCID: PMC8813909, DOI: 10.1038/s41598-021-04482-3.Peer-Reviewed Original ResearchConceptsTransgenic mouse lineMouse linesOlfactory bulbSubpopulation of interneuronsVivo mammalian brainTransgenic reporter animalsTransgenic reporter miceOlfactory receptor neuronsNeuronal electrical activityVoltage indicator ArcLightGlomerular layerReporter miceMammalian brainReceptor neuronsReporter animalsHigh expression levelsElectrical activityMembrane potential changesOdorant responsesNeural activityCell populationsSingle trialExpression levelsVivo experimentsDifferent cell typesDeepVID: A Self-supervised Deep Learning Framework for Two-photon Voltage Imaging Denoising
Liu C, Platisa J, Ye X, Ahrens A, Chen I, Davison I, Pieribone V, Chen J, Tian L. DeepVID: A Self-supervised Deep Learning Framework for Two-photon Voltage Imaging Denoising. 2022, btu4c.4. DOI: 10.1364/brain.2022.btu4c.4.Peer-Reviewed Original Research
2018
Genetically encoded fluorescent voltage indicators: are we there yet?
Platisa J, Pieribone VA. Genetically encoded fluorescent voltage indicators: are we there yet? Current Opinion In Neurobiology 2018, 50: 146-153. PMID: 29501950, PMCID: PMC5984684, DOI: 10.1016/j.conb.2018.02.006.Peer-Reviewed Original Research
2017
Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight
Platisa J, Vasan G, Yang A, Pieribone VA. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight. ACS Chemical Neuroscience 2017, 8: 513-523. PMID: 28045247, PMCID: PMC5355904, DOI: 10.1021/acschemneuro.6b00234.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCerebral CortexElectric StimulationEmbryo, MammalianGreen Fluorescent ProteinsHEK293 CellsHumansLuminescent ProteinsMiceModels, MolecularMolecular BiologyMutagenesis, Site-DirectedMutationNeuronsPatch-Clamp TechniquesRecombinant Fusion ProteinsTransfectionVoltage-Sensitive Dye Imaging
2016
A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices
Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Journal Of Neuroscience 2016, 36: 2458-2472. PMID: 26911693, PMCID: PMC4764664, DOI: 10.1523/jneurosci.3484-15.2016.Peer-Reviewed Original ResearchConceptsVoltage indicatorsBlue-shifted channelrhodopsinRed-shifted fluorescent proteinsFluorescent voltage indicatorsWide-field fluorescence microscopyBlue excitationOptical imagingOptical electrophysiologyLow phototoxicityAutofluorescent backgroundLight photoactivationSingle-trial recordingsTemporal resolutionChannelrhodopsinIntrinsic advantagesExcitationVoltage oscillationsFluorescence microscopyOscillationsGreen indicatorsChromophoreMicroscopyResolution
2015
Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment
Gruber DF, Gaffney JP, Mehr S, DeSalle R, Sparks JS, Platisa J, Pieribone VA. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment. PLOS ONE 2015, 10: e0140972. PMID: 26561348, PMCID: PMC4641735, DOI: 10.1371/journal.pone.0140972.Peer-Reviewed Original ResearchConceptsAcid-binding proteinFluorescent proteinFatty acid-binding proteinDuplication eventsGene duplication eventsStrong positive selectionNew fluorescent proteinsMarine environmentAdaptive evolutionEvolutionary switchCryptic genusVertebrate ordersVertebrate taxaPhylogenetic reconstructionProtein familyPhylogenetic analysisSequence motifsSister groupEvolutionary adaptationTranscriptomic analysisPositive selectionFatty acid binding proteinAcid binding proteinBinding proteinBright green fluorescence