2022
PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment
Collins NB, Al Abosy R, Miller BC, Bi K, Zhao Q, Quigley M, Ishizuka JJ, Yates KB, Pope HW, Manguso RT, Shrestha Y, Wadsworth M, Hughes T, Shalek AK, Boehm JS, Hahn WC, Doench JG, Haining WN. PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment. Journal For ImmunoTherapy Of Cancer 2022, 10: e003402. PMID: 35264433, PMCID: PMC8915320, DOI: 10.1136/jitc-2021-003402.Peer-Reviewed Original ResearchConceptsImmune evasionCheckpoint blockadePI3K activationMouse syngeneic tumor modelsPharmacological PI3K inhibitionEfficacy of immunotherapyNumber of CD8Tumor immune evasionTumor immune microenvironmentRational combination strategiesSyngeneic tumor modelsCell-extrinsic effectsK activationPI3K inhibitionMyeloid microenvironmentImmune microenvironmentPoor responseMyeloid infiltrationT cellsImmune responseImmunotherapyMyeloid cellsImmune systemPhospho-inositol-3 kinaseTumor microenvironment
2021
Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence
Wu Z, Zhou J, Zhang X, Zhang Z, Xie Y, Liu JB, Ho ZV, Panda A, Qiu X, Cejas P, Cañadas I, Akarca FG, McFarland JM, Nagaraja AK, Goss LB, Kesten N, Si L, Lim K, Liu Y, Zhang Y, Baek JY, Liu Y, Patil DT, Katz JP, Hai J, Bao C, Stachler M, Qi J, Ishizuka JJ, Nakagawa H, Rustgi AK, Wong KK, Meyerson M, Barbie DA, Brown M, Long H, Bass AJ. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics 2021, 53: 881-894. PMID: 33972779, PMCID: PMC9124436, DOI: 10.1038/s41588-021-00859-2.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAdenosine DeaminaseAnimalsBase SequenceCarcinogenesisCell Line, TumorCell Transformation, NeoplasticCyclin-Dependent Kinase Inhibitor p16Endogenous RetrovirusesEnhancer Elements, GeneticEpigenomeEsophageal NeoplasmsEsophageal Squamous Cell CarcinomaGene Expression Regulation, NeoplasticGenome, HumanHumansInterferonsIntronsKruppel-Like Transcription FactorsMiceOrganoidsProtein BindingRNA-Binding ProteinsRNA, Double-StrandedSOXB1 Transcription FactorsTumor Suppressor Protein p53ConceptsRNA editing enzyme ADAR1Activity of oncogenesTranscription factor Sox2Chromatin remodelingSox2 bindingSOX2 activityTranscriptional landscapeEnzyme ADAR1Sox2 functionFactor Sox2Esophageal squamous cell carcinomaEsophageal organoidsTargetable vulnerabilitiesEndogenous retrovirusesSOX2Chromosome 3q amplificationSOX2 overexpressionPrecursor cellsP16 inactivationOncogeneEpigenomeCistromeNormal tissuesSquamous esophagusADAR1Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, Dele-Oni D, Du PP, Halawi AG, Ishizuka JJ, Kim SY, Klaeger S, Knudsen NH, Miller BC, Nguyen TH, Olander KE, Papanastasiou M, Rachimi S, Robitschek EJ, Schneider EM, Yeary MD, Zimmer MD, Jaffe JD, Carr SA, Doench JG, Haining WN, Yates KB, Manguso RT, Bernstein BE. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 2021, 595: 309-314. PMID: 33953401, PMCID: PMC9166167, DOI: 10.1038/s41586-021-03520-4.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCheckpoint blockadeCytotoxic T cell responsesT cell responsesMouse tumor modelsImmune exclusionImmune clustersRetroviral antigensImmune sensitivityImmunostimulatory genesIntrinsic immunogenicityCell responsesTumor modelCentral mechanismsHuman tumorsCancer cellsBlockadeCandidate targetsImmunogenicity
2018
Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade
Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, Miller BC, Du PP, Yates KB, Dubrot J, Buchumenski I, Comstock DE, Brown FD, Ayer A, Kohnle IC, Pope HW, Zimmer MD, Sen DR, Lane-Reticker SK, Robitschek EJ, Griffin GK, Collins NB, Long AH, Doench JG, Kozono D, Levanon EY, Haining WN. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2018, 565: 43-48. PMID: 30559380, PMCID: PMC7241251, DOI: 10.1038/s41586-018-0768-9.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DeaminaseAnimalsCell Cycle CheckpointsCell Line, TumorCRISPR-Cas SystemsDrug Resistance, NeoplasmFemaleHistocompatibility Antigens Class IImmunotherapyInflammationInterferon-Induced Helicase, IFIH1InterferonsMelanoma, ExperimentalMiceMice, Inbred C57BLPhenotypeProgrammed Cell Death 1 ReceptorReceptors, G-Protein-CoupledRNA EditingRNA-Binding ProteinsRNA, Double-StrandedConceptsImmune checkpoint blockadeCheckpoint blockadeAntigen presentationEffective anti-tumor immunityPD-1 checkpoint blockadeTumor cellsAnti-tumor immunityT cell recognitionSufficient inflammationImmunotherapy resistanceInhibitory checkpointsMost patientsInnate ligandsLoss of functionBlockadeTherapeutic requirementsLoss of ADAR1TumorsCancer cellsCell recognitionInflammationGrowth inhibitionADAR1PresentationCells