2000
Simvastatin Modulates Cytokine-Mediated Endothelial Cell Adhesion Molecule Induction: Involvement of an Inhibitory G Protein
Sadeghi M, Collinge M, Pardi R, Bender J. Simvastatin Modulates Cytokine-Mediated Endothelial Cell Adhesion Molecule Induction: Involvement of an Inhibitory G Protein. The Journal Of Immunology 2000, 165: 2712-2718. PMID: 10946302, DOI: 10.4049/jimmunol.165.5.2712.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicBiological TransportCell Adhesion MoleculesCells, CulturedCholesterolCytokinesDrug SynergismE-SelectinEndothelium, VascularGene Expression RegulationGTP-Binding Protein alpha Subunits, Gi-GoHumansHydroxymethylglutaryl-CoA Reductase InhibitorsIntercellular Adhesion Molecule-1Interleukin-1NF-kappa BRNA, MessengerSignal TransductionSimvastatinSodium FluorideUmbilical VeinsVascular Cell Adhesion Molecule-1ConceptsEffect of simvastatinCytokine-induced expressionIL-1Endothelial CAMsEndothelial cell adhesion molecules E-selectinNF-kappaBProinflammatory cytokines IL-1Cell adhesion molecules E-selectinAdhesion molecules E-selectinPotent immune modulatorG protein activator NaFCytokines IL-1G protein-coupled pathwayInhibitory G proteinCytokine-mediated activationSelectin mRNA levelsBasal toneProinflammatory cytokinesGialpha proteinsImmune modulatorsTNF-alphaICAM-1Pertussis toxinE-selectinEndothelial responseCD28 and LFA‐1 contribute to cyclosporin A‐resistant T cell growth by stabilizing the IL‐2 mRNA through distinct signaling pathways
Geginat J, Clissi B, Moro M, Dellabona P, Bender J, Pardi R. CD28 and LFA‐1 contribute to cyclosporin A‐resistant T cell growth by stabilizing the IL‐2 mRNA through distinct signaling pathways. European Journal Of Immunology 2000, 30: 1136-1144. PMID: 10760803, DOI: 10.1002/(sici)1521-4141(200004)30:4<1136::aid-immu1136>3.0.co;2-3.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, CDB7-2 AntigenCalcineurinCD28 AntigensCells, CulturedCyclosporineCytoskeletonDendritic CellsDNA-Binding ProteinsDrug SynergismHumansIntercellular Adhesion Molecule-1Interleukin-2Lymphocyte ActivationLymphocyte Function-Associated Antigen-1Membrane GlycoproteinsMitogen-Activated Protein KinasesNF-kappa BNFATC Transcription FactorsNuclear ProteinsPromoter Regions, GeneticProtein BindingRNA StabilityRNA, MessengerSignal TransductionSuperantigensT-LymphocytesTranscription FactorsConceptsIL-2 mRNALFA-1ICAM-1IL-2 dependentT cell proliferationSubsequent T cell proliferationCostimulatory molecule CD28TCR-induced proliferationSignaling pathwaysT cell growthIL-2 transcriptsGraft rejectionDendritic cellsIL-2Clinical transplantationT lymphocytesMolecule CD28Primary T lymphocytesNF-kappaBCD28Distinct signaling pathwaysLower transcriptional rateDifferent signaling pathwaysProtein kinase activationCell proliferation
1999
Anchorage dependence of mitogen-induced G1 to S transition in primary T lymphocytes.
Geginat J, Bossi G, Bender J, Pardi R. Anchorage dependence of mitogen-induced G1 to S transition in primary T lymphocytes. The Journal Of Immunology 1999, 162: 5085-93. PMID: 10227977, DOI: 10.4049/jimmunol.162.9.5085.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalCalcium-Calmodulin-Dependent Protein KinasesCell AdhesionCell CycleCell Cycle ProteinsCell SizeCyclin-Dependent Kinase 4Cyclin-Dependent Kinase 6Cyclin-Dependent Kinase Inhibitor p27Cyclin-Dependent KinasesDown-RegulationEnzyme ActivationG1 PhaseGene Expression RegulationGenes, fosGenes, junHumansInterleukin-2InterphaseKineticsLymphocyte Function-Associated Antigen-1Microtubule-Associated ProteinsMitogensProtein Serine-Threonine KinasesProto-Oncogene ProteinsReceptors, Antigen, T-CellS PhaseT-LymphocytesTumor Suppressor ProteinsConceptsNormal T cellsT lymphocytesT cellsPrimary T lymphocytesRetinoblastoma protein inactivationCytokines IL-2Function-blocking mAbsIL-2ICAM-1Mitogen-activated protein kinase activationCyclin-dependent kinase inhibitor p27kipIntegrins actMitogenic responseMitogenic cytokinesGrowth factorLymphocytesCell cycle progressionTCR stimulationLate componentsProtein kinase activationLeukocyte integrinsAnchorage dependenceTCR triggeringCycle progressionCellular requirements
1998
Retroviral Gene Transfer: Effects on Endothelial Cell Phenotype
Inaba M, Toninelli E, Vanmeter G, Bender J, Conte M. Retroviral Gene Transfer: Effects on Endothelial Cell Phenotype. Journal Of Surgical Research 1998, 78: 31-36. PMID: 9733614, DOI: 10.1006/jsre.1998.5379.Peer-Reviewed Original ResearchConceptsEndothelial cellsTransduced ECsCell adhesion molecule profilesCell phenotypeHuman umbilical vein endothelial cellsUmbilical vein endothelial cellsAdhesion molecule profileUpregulation of expressionGT protocolVein endothelial cellsTarget cell phenotypeViral exposureMHC-IICardiovascular diseaseActivation moleculeICAM-1Endothelial cell phenotypeVCAM-1E-selectinGene transferVivo gene transferCell countSystemic deliveryCytokine stimulationUnaltered pattern