2000
Nerve growth factor maintains potassium conductance after nerve injury in adult cutaneous afferent dorsal root ganglion neurons
Everill B, Kocsis J. Nerve growth factor maintains potassium conductance after nerve injury in adult cutaneous afferent dorsal root ganglion neurons. Neuroscience 2000, 100: 417-422. PMID: 11008179, PMCID: PMC2605351, DOI: 10.1016/s0306-4522(00)00263-3.Peer-Reviewed Original ResearchConceptsTransient A-currentNerve growth factorDorsal root ganglion neuronsK currentsNerve ligationGrowth factorA-currentGanglion neuronsSciatic nerveWhole-cell patch-clamp techniquePotassium conductanceDistal nerve segmentsAfferent cell bodiesMini-osmotic pumpsVoltage-dependent potassium conductancePatch-clamp techniqueTransient potassium currentAppropriate ion replacementNerve growth factor treatmentGrowth factor treatmentNerve injuryNerve crushNerve segmentsCutaneous afferentsControl neurons
1989
Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve
Gordon T, Kocsis J, Waxman S. Pharmacological sensitivities of two afterhyperpolarizations in rat optic nerve. Brain Research 1989, 502: 252-257. PMID: 2555026, DOI: 10.1016/0006-8993(89)90620-3.Peer-Reviewed Original ResearchConceptsRat optic nerveOptic nerveEarly afterhyperpolarizationPharmacological sensitivityAction potentialsPeak latencyAction potential broadeningConstant current depolarizationSucrose gap chamberPotassium channel blockerLate afterhyperpolarizationChannel blockersRepetitive stimulationAfterhyperpolarizationNervePotassium conductanceSucrose gapTetraethylammoniumPotential broadeningCurrent depolarizationDepolarizationDurationApaminBlockersCharybdotoxin
1985
Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivityLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1983
ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.
Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.Peer-Reviewed Original ResearchMyelinated axonsAction potentialsNational Multiple Sclerosis SocietyMultiple Sclerosis SocietyIntra-axonal recordingsEarly regenerating fibersNormal myelinated axonsRegenerating fibersPharmacological blockageBurst activityPotassium conductanceAxonsVeterans AdministrationNational InstituteRegenerated fibersRepolarizationFunctional organizationIonic channelsRatsAdministrationMyelin
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent study
1980
Absence of potassium conductance in central myelinated axons
Kocsis J, Waxman S. Absence of potassium conductance in central myelinated axons. Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.Peer-Reviewed Original ResearchConceptsCentral myelinated axonsMyelinated axonsAction potentialsPotassium conductanceDorsal column axonsVoltage-clamp experimentsLate outward currentOutward currentsAxonsSodium ion permeabilityLate increaseDepolarization phasePotassium permeabilityAxonal membraneRepolarizationMyelinInitial increaseVoltage-dependent changesSodium inactivationDemyelinationPrevious studies