2019
Minimally Invasive Delivery of Microbeads with Encapsulated, Viable and Quiescent Neural Stem Cells to the Adult Subventricular Zone
Matta R, Lee S, Genet N, Hirschi KK, Thomas JL, Gonzalez AL. Minimally Invasive Delivery of Microbeads with Encapsulated, Viable and Quiescent Neural Stem Cells to the Adult Subventricular Zone. Scientific Reports 2019, 9: 17798. PMID: 31780709, PMCID: PMC6882840, DOI: 10.1038/s41598-019-54167-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell EncapsulationCell LineCell ProliferationCell SurvivalEndothelial CellsLateral VentriclesMaleMatrix MetalloproteinasesMiceMice, Inbred C57BLMicrospheresNeural Stem CellsNeuronsPolyethylene GlycolsRecovery of FunctionStem Cell NicheStem Cell TransplantationConceptsEndothelial cellsSubventricular zoneNSC quiescenceNon-injury modelQuiescent neural stem cellsAdult subventricular zoneNeuronal stem cellsStem cellsNeural stem cellsFunctional recoveryNeurological injuryInflammatory responseNeural stem cell maintenanceNSC deliveryNeural tissue repairNeurological diseasesMouse brainCell therapyNSC viabilityBrainTissue repairInjuryCo-encapsulated cellsSurvivalDeliveryRNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1+ Roof-Plate-Derived Cells
Ghazale H, Ripoll C, Leventoux N, Jacob L, Azar S, Mamaeva D, Glasson Y, Calvo CF, Thomas JL, Meneceur S, Lallemand Y, Rigau V, Perrin FE, Noristani HN, Rocamonde B, Huillard E, Bauchet L, Hugnot JP. RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1+ Roof-Plate-Derived Cells. Stem Cell Reports 2019, 12: 1159-1177. PMID: 31031189, PMCID: PMC6524006, DOI: 10.1016/j.stemcr.2019.04.001.Peer-Reviewed Original ResearchConceptsTranscription factorsRNA profilingDevelopmental transcription factorsDorsal-ventral patternStem cell nicheEpendymal zoneMolecular resourcesMammalian lesionsConserved expressionCell nicheNeural stem cellsCell diversityPossible endogenous sourceQuiescent cellsGenesFloor plateStem cellsMsx1Endogenous sourcesTransgenic miceCellsProfilingSpinal cordCentral canalExpression
2016
Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres.
Lopez-Ramirez MA, Calvo CF, Ristori E, Thomas JL, Nicoli S. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres. Journal Of Visualized Experiments 2016, 53617. PMID: 26967835, PMCID: PMC4828210, DOI: 10.3791/53617.Peer-Reviewed Original ResearchConceptsAdult zebrafish brainStem/progenitor cellsZebrafish brainMolecular mechanismsRelevant model organismZebrafish adult brainProgenitor cellsSingle-cell dissociationSpecific signaling pathwaysAdult stem/progenitor cellsStem/progenitor cell proliferationNeural stem/progenitor cell proliferationProgenitor cell proliferationNeural stem/progenitor cellsModel organismsGene expressionCell dissociationSignaling pathwaysMultipotent neural stem/progenitor cellsNeurosphere assayAdult neurogenesisCell proliferationZebrafishBrain regenerationAdult brain
2015
Cell autonomous Vegf-C/Vegfr3 signaling in adult neural stem cells
Kang TH, Han J, Thomas JL. Cell autonomous Vegf-C/Vegfr3 signaling in adult neural stem cells. Oncotarget 2015, 6: 39387-39388. PMID: 26575019, PMCID: PMC4741828, DOI: 10.18632/oncotarget.6325.Peer-Reviewed Original ResearchEmbryonic Stem Cells License a High Level of Dormant Origins to Protect the Genome against Replication Stress
Ge XQ, Han J, Cheng EC, Yamaguchi S, Shima N, Thomas JL, Lin H. Embryonic Stem Cells License a High Level of Dormant Origins to Protect the Genome against Replication Stress. Stem Cell Reports 2015, 5: 185-194. PMID: 26190528, PMCID: PMC4618655, DOI: 10.1016/j.stemcr.2015.06.002.Peer-Reviewed Original ResearchConceptsEmbryonic stem cellsStem/progenitor cellsNeural stem/progenitor cellsStem cellsProgenitor cellsTissue stem/progenitor cellsMCM2-7 complexDNA replication originsTissue-specific stem/progenitor cellsStem cell typesGenome integrityGenomic integrityReplication stressDormant originsReplication forksReplicative stressDNA replicationReplication originsNeural lineagesDNA damageS phaseCell typesAbnormal neurogenesisCellsGenomeRemyelination by Resident Oligodendrocyte Precursor Cells in a Xenopus laevis Inducible Model of Demyelination
Sekizar S, Mannioui A, Azoyan L, Colin C, Thomas JL, Du Pasquier D, Mallat M, Zalc B. Remyelination by Resident Oligodendrocyte Precursor Cells in a Xenopus laevis Inducible Model of Demyelination. Developmental Neuroscience 2015, 37: 232-242. PMID: 25896276, DOI: 10.1159/000380817.Peer-Reviewed Original ResearchVascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans
Han J, Calvo CF, Kang TH, Baker KL, Park JH, Parras C, Levittas M, Birba U, Pibouin-Fragner L, Fragner P, Bilguvar K, Duman RS, Nurmi H, Alitalo K, Eichmann AC, Thomas JL. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans. Cell Reports 2015, 10: 1158-1172. PMID: 25704818, PMCID: PMC4685253, DOI: 10.1016/j.celrep.2015.01.049.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationCells, CulturedEmbryonic Stem CellsExtracellular Signal-Regulated MAP KinasesHippocampusHumansMiceMice, Inbred C57BLNeural Stem CellsNeurogenesisProto-Oncogene Proteins c-aktRecombinant ProteinsSignal TransductionVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-3ConceptsHuman embryonic stem cellsNeural stem cellsVascular endothelial growth factor receptor 3Growth factor receptor 3NSC activationStem cellsProgenitor cellsAdult hippocampal neural stem cellsEmbryonic stem cellsNeural stem cell activationStem cell activationQuiescent neural stem cellsNeural progenitor cellsCell fateReceptor 3Specific regulatorsAdult mammalian hippocampusMolecular mechanismsCell cycleHippocampal neural stem cellsLigand VEGFERK pathwayConditional deletionNew neuronsVEGFR3
2013
Ascl1/Mash1 Promotes Brain Oligodendrogenesis during Myelination and Remyelination
Nakatani H, Martin E, Hassani H, Clavairoly A, Maire CL, Viadieu A, Kerninon C, Delmasure A, Frah M, Weber M, Nakafuku M, Zalc B, Thomas JL, Guillemot F, Nait-Oumesmar B, Parras C. Ascl1/Mash1 Promotes Brain Oligodendrogenesis during Myelination and Remyelination. Journal Of Neuroscience 2013, 33: 9752-9768. PMID: 23739972, PMCID: PMC3892435, DOI: 10.1523/jneurosci.0805-13.2013.Peer-Reviewed Original ResearchConceptsOligodendrocyte precursor cellsNeonatal periodCortical oligodendrocyte precursor cellsOligodendrocyte developmentCortical subventricular zoneSubventricular zone progenitorsMultiple sclerosis lesionsMyelin-forming cellsPostnatal cortexRemyelination processFocal demyelinationCorpus callosumSubventricular zoneOPC differentiationPostnatal brainMouse modelAscl1 functionOligodendrogenesisOPC developmentSclerosis lesionsASCL1 expressionCortical progenitorsRemyelinationProneural transcription factorsOligodendrocytes
2011
A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells
Lamprianou S, Chatzopoulou E, Thomas J, Bouyain S, Harroch S. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 17498-17503. PMID: 21969550, PMCID: PMC3198311, DOI: 10.1073/pnas.1108774108.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCell DifferentiationCell ProliferationContactin 1Crystallography, X-RayHumansMiceMice, KnockoutModels, MolecularModels, NeurologicalMultiprotein ComplexesNeural Stem CellsNeurogenesisOligodendrogliaProtein Structure, TertiaryReceptor-Like Protein Tyrosine Phosphatases, Class 5Recombinant ProteinsSolubilityConceptsCarbonic anhydrase-like domainPrecursor cellsReceptor protein tyrosineOligodendrocyte precursor cellsPtprz-deficient miceProtein tyrosineCell adhesion moleculeNeural cell adhesion moleculeBiological roleContactin familyCocrystal structureGlial cell populationsUnknown modulatorsPtprzCentral nervous systemCell populationsCNTN1Structural dataAdhesion moleculesBindsContactin-1CellsMature oligodendrocytesComplexesNervous systemVascular endothelial growth factor receptor 3 directly regulates murine neurogenesis
Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikkä J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes & Development 2011, 25: 831-844. PMID: 21498572, PMCID: PMC3078708, DOI: 10.1101/gad.615311.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedEnzyme-Linked Immunosorbent AssayImmunohistochemistryLymphangiogenesisMiceMice, Mutant StrainsMicroscopy, Electron, TransmissionNeovascularization, PhysiologicNeural Stem CellsNeurogenesisOligonucleotide Array Sequence AnalysisReverse Transcriptase Polymerase Chain ReactionVascular Endothelial Growth Factor Receptor-3ConceptsNeural stem cellsSubventricular zoneVEGF receptorsNeural cellsVEGFR-3Vascular endothelial growth factor (VEGF) familyEndothelial growth factor familyVascular endothelial growth factor receptor 3VEGFR-3 expressionMultipotent neural stem cellsCapillary endothelial cellsGrowth factor receptor 3Overexpression of VEGFGrowth factor familyAdult neurogenesisSVZ neurogenesisReporter miceReceptor 3NeurogenesisNeurodegenerative diseasesConditional deletionEndothelial cellsGrowth factorLigand VEGFInducible deletion