2021
Collagen type VI-α1 and 2 repress the proliferation, migration and invasion of bladder cancer cells
Piao X, Hwang B, Jeong P, Byun Y, Kang H, Seo S, Kim W, Lee J, Ha Y, Lee Y, Kim I, Choi Y, Cha E, Moon S, Yun S, Kim W. Collagen type VI-α1 and 2 repress the proliferation, migration and invasion of bladder cancer cells. International Journal Of Oncology 2021, 59: 37. PMID: 33982770, DOI: 10.3892/ijo.2021.5217.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overCell Line, TumorCell MovementCell ProliferationCollagen Type VIG1 Phase Cell Cycle CheckpointsGene Expression Regulation, NeoplasticHumansMiddle AgedP38 Mitogen-Activated Protein KinasesPhosphorylationProto-Oncogene Proteins c-aktSignal TransductionTranscription FactorsUrinary Bladder NeoplasmsConceptsNon-muscle invasive BCaExtracellular matrixMRNA expressionEJ cellsBladder cancer microenvironmentTissue samplesHeterogeneous tumor cell populationsCell cycle arrestReverse transcription-quantitative PCRTumor-suppressive effectsBladder cancer cellsP38 MAPK phosphorylationTranscription-quantitative PCRCollagen typesRisk stratificationInvasive BCaTumor infiltrationTumor cell populationBCa pathogenesisMMP-9MAPK phosphorylationAkt phosphorylationCycle arrestNormal controlsMatrix metalloproteinase
2019
TCF4 induces enzalutamide resistance via neuroendocrine differentiation in prostate cancer
Lee G, Rosenfeld J, Kim W, Kwon Y, Palapattu G, Mehra R, Kim W, Kim I. TCF4 induces enzalutamide resistance via neuroendocrine differentiation in prostate cancer. PLOS ONE 2019, 14: e0213488. PMID: 31536510, PMCID: PMC6752758, DOI: 10.1371/journal.pone.0213488.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzamidesBeta CateninCell Line, TumorDisease Models, AnimalDrug Resistance, NeoplasmHumansMaleMiceMice, KnockoutNeuroendocrine CellsNitrilesPhenylthiohydantoinProstatic NeoplasmsProtein BindingProtein TransportTranscription Factor 7-Like 2 ProteinXenograft Model Antitumor AssaysConceptsCastration-resistant prostate cancerEnzalutamide resistanceTranscription factor 4Neuroendocrine differentiationProstate cancerSecond-generation androgen receptor antagonistHuman prostate cancer cell linesLNCaP human prostate cancer cell lineResistant prostate cancerProstate cancer cell linesStandard of careAndrogen receptor antagonistMouse xenograft modelExpression levelsCell linesTCF4 overexpressionCancer cell linesMedian timeClinical benefitReceptor antagonistNeuroendocrine markersMetastatic CaPTreatment resistanceXenograft modelParental cell line
2016
BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer
Bansal N, Bartucci M, Yusuff S, Davis S, Flaherty K, Huselid E, Patrizii M, Jones D, Cao L, Sydorenko N, Moon Y, Zhong H, Medina D, Kerrigan J, Stein M, Kim I, Davis T, DiPaola R, Bertino J, Sabaawy H. BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer. Clinical Cancer Research 2016, 22: 6176-6191. PMID: 27307599, PMCID: PMC5159329, DOI: 10.1158/1078-0432.ccr-15-3107.Peer-Reviewed Original ResearchConceptsTumor-initiating cellsProstate tumor-initiating cellsBmi-1Androgen receptor-directed therapyIntrinsic therapy resistanceReceptor-directed therapyProstate cancer managementProstate cancer treatmentMore effective therapiesBmi-1 expressionProstate cancer cellsStem cell-like traitsSelf-renewing tumor-initiating cellsCell-like traitsPatient-derived cellsEffective therapyTumor relapseCancer managementXenograft modelTherapy resistancePharmacologic inhibitionBmi-1 functionTherapyNormal tissuesCancer treatment
2015
Increased Expression of Androgen Receptor mRNA in Human Renal Cell Carcinoma Cells is Associated with Poor Prognosis in Patients with Localized Renal Cell Carcinoma
Ha Y, Lee G, Modi P, Kwon Y, Ahn H, Kim W, Kim I. Increased Expression of Androgen Receptor mRNA in Human Renal Cell Carcinoma Cells is Associated with Poor Prognosis in Patients with Localized Renal Cell Carcinoma. Journal Of Urology 2015, 194: 1441-1448. PMID: 25796113, DOI: 10.1016/j.juro.2015.03.078.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBiomarkers, TumorBlotting, WesternCarcinoma, Renal CellCell Line, TumorDisease ProgressionFemaleFollow-Up StudiesGene Expression Regulation, NeoplasticHumansKidney NeoplasmsMaleMiddle AgedNeoplasm StagingPrognosisReal-Time Polymerase Chain ReactionReceptors, AndrogenRetrospective StudiesRNA, NeoplasmTime FactorsYoung AdultConceptsRenal cell carcinomaAndrogen receptor mRNA expressionReceptor mRNA expression levelsCancer-specific survivalCell carcinomaCell carcinoma cell linesReceptor mRNA expressionHuman renal cell carcinoma cell linesRenal cell carcinoma cell linesAndrogen receptorMRNA expression levelsSpecific survivalCarcinoma cell linesMultivariate Cox regression analysisLocalized Renal Cell CarcinomaMRNA expressionT2 renal cell carcinomaCell linesPathological stage T1Androgen receptor expressionCox regression analysisKaplan-Meier estimatesReceptor-positive cell linesChain reactionPositive renal cell carcinomas
2014
DHCR24 is an Independent Predictor of Progression in Patients with Non-Muscle-Invasive Urothelial Carcinoma, and Its Functional Role is Involved in the Aggressive Properties of Urothelial Carcinoma Cells
Lee G, Ha Y, Jung Y, Moon S, Kang H, Lee O, Joung J, Choi Y, Yun S, Kim W, Kim I. DHCR24 is an Independent Predictor of Progression in Patients with Non-Muscle-Invasive Urothelial Carcinoma, and Its Functional Role is Involved in the Aggressive Properties of Urothelial Carcinoma Cells. Annals Of Surgical Oncology 2014, 21: 538-545. PMID: 24562935, DOI: 10.1245/s10434-014-3560-6.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAndrostenesCarcinomaCell AdhesionCell Line, TumorCell MovementCell ProliferationCell SurvivalDisease ProgressionDisease-Free SurvivalFemaleGene ExpressionGene Knockdown TechniquesHumansMaleMiddle AgedNeoplasm InvasivenessNerve Tissue ProteinsOxidoreductases Acting on CH-CH Group DonorsRNA, MessengerUrinary Bladder NeoplasmsYoung AdultConceptsUrothelial carcinoma cellsMRNA expression levelsIndependent predictorsUrothelial carcinomaImmunohistochemical stainingNon-muscle invasive urothelial carcinomaMultivariate Cox regression analysisCarcinoma cellsHuman UC cellsCox regression analysisKaplan-Meier estimatesInvasive urothelial carcinomaAggressive propertiesHuman urothelial carcinoma cellsExpression levelsProgression-related genesDHCR24 expressionExpression groupFunctional roleClinical relevanceGene signaturePatientsUC cellsProgressionHigh gradeProstate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction
Lee G, Kang D, Ha Y, Jung Y, Chung J, Min K, Kim T, Moon K, Chung J, Lee D, Kim W, Kim I. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction. British Journal Of Cancer 2014, 110: 1634-1644. PMID: 24518599, PMCID: PMC3960605, DOI: 10.1038/bjc.2014.23.Peer-Reviewed Original ResearchMeSH KeywordsAdultAndrogen AntagonistsAnilidesBone Morphogenetic Protein 6Bone NeoplasmsCell CommunicationCell Growth ProcessesCell Line, TumorHumansMaleMiddle AgedNeoplasm MetastasisNitrilesOrchiectomyProstatic Neoplasms, Castration-ResistantProto-Oncogene ProteinsReceptors, AndrogenRetrospective StudiesStromal CellsTosyl CompoundsWnt ProteinsWnt-5a ProteinConceptsCastration-resistant prostate cancerBone stromal cellsBone metastasesBone morphogenetic protein 6Castration resistanceCaP cell linesStromal cellsProstate cancerPrimary androgen deprivation therapyProstate-specific antigen progressionProstate cancer bone metastasisAndrogen-deprived mediumBone-tumor interactionAndrogen deprivation therapyFirst-line therapyCancer bone metastasisMetastatic prostate cancerAbsence of androgenAndrogen-depleted conditionsNF-κB pathwayCell linesPolymerase chain reaction arrayBMP-6 expressionAdvanced CaPDeprivation therapy
2013
Mechanism of pro‐tumorigenic effect of BMP‐6: Neovascularization involving tumor‐associated macrophages and IL‐1α
Kwon S, Lee G, Lee J, Iwakura Y, Kim W, Kim I. Mechanism of pro‐tumorigenic effect of BMP‐6: Neovascularization involving tumor‐associated macrophages and IL‐1α. The Prostate 2013, 74: 121-133. PMID: 24185914, DOI: 10.1002/pros.22734.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 6CarcinogenesisCell DifferentiationCell Line, TumorCell ProliferationCoculture TechniquesEndothelium, VascularHumansInterleukin-1alphaMacrophagesMaleMiceMice, Inbred C57BLMice, KnockoutNeovascularization, PathologicNF-kappa BProstatic NeoplasmsSignal TransductionSmad1 ProteinConceptsBone morphogenetic protein 6Prostate cancer growthTumor-associated macrophagesIL-1APro-tumorigenic effectsCancer growthHuman prostate cancer cell linesHuman prostate cancer tissuesLNCaP human prostate cancer cell lineProstate cancer cell linesTube formationProstate cancer tissuesTHP-1 cellsEndothelial tube formationCancer cell linesIL-1αProstate cancerKnockout miceCD11b-DTRCancer tissuesTumor growthNF-kB1Endothelial cellsMacrophagesConditioned mediaBone morphogenetic protein‐6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages
Lee G, Jung Y, Ha Y, Kim J, Kim W, Kim I. Bone morphogenetic protein‐6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages. Cancer Science 2013, 104: 1027-1032. PMID: 23710822, PMCID: PMC7657257, DOI: 10.1111/cas.12206.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen Receptor AntagonistsAndrogensAnilidesAnimalsBenzamidesBenzofuransBone Morphogenetic Protein 6Cell Line, TumorDihydrotestosteroneHumansInterleukin-6Lymphocytes, Tumor-InfiltratingMacrophagesMaleMiceNitrilesPhenylthiohydantoinPromoter Regions, GeneticProstatic Neoplasms, Castration-ResistantQuinolinesReceptors, AndrogenTosyl CompoundsUp-RegulationConceptsCaP cell linesCastration resistanceInterleukin-6Castration-resistant prostate cancerContext of macrophagesHuman CaP cell linesExpression of ARRemoval of macrophagesAndrogen receptor mRNAProstate cancer progressionBMP-6Presence of dihydrotestosteroneProstate cancer cellsCell linesPresence of macrophagesPleiotropic growth factorBone morphogenetic proteinClodronate liposomesTRAMP-C1AR upregulationProstate cancerAndrogen hypersensitivityMacrophage coculturesReceptor mRNACell countBMP-6 in Renal Cell Carcinoma Promotes Tumor Proliferation through IL-10–Dependent M2 Polarization of Tumor-Associated Macrophages
Lee J, Lee G, Woo S, Ha Y, Kwon S, Kim W, Kim I. BMP-6 in Renal Cell Carcinoma Promotes Tumor Proliferation through IL-10–Dependent M2 Polarization of Tumor-Associated Macrophages. Cancer Research 2013, 73: 3604-3614. PMID: 23633487, DOI: 10.1158/0008-5472.can-12-4563.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 6Carcinoma, Renal CellCell LineCell Line, TumorCell ProliferationClodronic AcidDoxycyclineHumansImmunoblottingInterleukin-10Kaplan-Meier EstimateKidney NeoplasmsMacrophagesMiceMice, Inbred BALB CMice, KnockoutMicroscopy, FluorescenceReverse Transcriptase Polymerase Chain ReactionRNA InterferenceSmad5 ProteinSTAT3 Transcription FactorTumor Burden
2011
EFEMP1 as a Novel DNA Methylation Marker for Prostate Cancer: Array-Based DNA Methylation and Expression Profiling
Kim Y, Yoon H, Kim S, Kim Y, Kim E, Kim I, Kim W. EFEMP1 as a Novel DNA Methylation Marker for Prostate Cancer: Array-Based DNA Methylation and Expression Profiling. Clinical Cancer Research 2011, 17: 4523-4530. PMID: 21571867, DOI: 10.1158/1078-0432.ccr-10-2817.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAzacitidineBiomarkers, TumorCell Line, TumorCpG IslandsDecitabineDNA MethylationDNA Modification MethylasesEpigenomicsExtracellular Matrix ProteinsGene Expression ProfilingGene Expression Regulation, NeoplasticHumansMaleMiddle AgedPromoter Regions, GeneticProstatic HyperplasiaProstatic NeoplasmsReproducibility of ResultsConceptsEpidermal growth factor-containing fibulin-like extracellular matrix protein 1DNA methylationGene Expression OmnibusExpression profilingProstate cell linesGenome-wide characterizationCell linesMethylation statusExtracellular matrix protein 1Methylation markersDNA methylation profilesBisulfite sequencing analysisFibulin-like extracellular matrix protein 1Aberrant methylation patternsAbnormal DNA methylationExpression levelsNovel methylation markersGene expression analysisGene expression profilingNovel DNA methylation markersMatrix protein 1Gene expression dataGene expression levelsMicroarray gene expression dataMethylation patternsMacrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6‐IL6 Loop
Lee G, Kwon S, Lee J, Jeon S, Jang K, Choi H, Lee H, Kim W, Lee D, Kim I. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6‐IL6 Loop. The Prostate 2011, 71: 1525-1537. PMID: 21374653, DOI: 10.1002/pros.21369.Peer-Reviewed Original ResearchConceptsProstate cancer cellsHormone-refractory prostate cancerRefractory prostate cancerNeuroendocrine differentiationBone morphogenetic protein 6IL-6Cancer cellsProstate cancerInterleukin-6 knockout miceTRAMP-C2 cell lineHuman prostate cancer tissuesNeuroendocrine cellsCell linesParathyroid hormone-related peptideTRAMP-C2 prostate cancer cellsTRAMP-C2 cellsMacrophage-depleted miceProstate Cancer Neuroendocrine DifferentiationIL-6 expressionTHP-1 human monocytic cell lineHormone-related peptideProstate cancer tissuesHuman monocytic cell lineRAW 264.7 murine macrophage cell lineEffect of macrophages
2006
Expression of estrogen receptors‐α and ‐β in bladder cancer cell lines and human bladder tumor tissue
Shen S, Smith C, Hsieh J, Yu J, Kim I, Jian W, Sonpavde, Ayala G, Younes M, Lerner S. Expression of estrogen receptors‐α and ‐β in bladder cancer cell lines and human bladder tumor tissue. Cancer 2006, 106: 2610-2616. PMID: 16700038, DOI: 10.1002/cncr.21945.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsBlotting, WesternCarcinoma, Transitional CellCell Line, TumorCell ProliferationEstradiolEstrogen Receptor alphaEstrogen Receptor betaFulvestrantGene Expression ProfilingGene Expression Regulation, NeoplasticHumansImmunohistochemistryMicroarray AnalysisNeoplasm StagingRaloxifene HydrochlorideReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTamoxifenUrinary Bladder NeoplasmsConceptsBladder cancer cell linesExpression of ERbetaCancer cell linesERbeta expressionHuman bladder cancerBladder cancer cellsBladder cancerEstrogen receptorWestern blot analysisT4 tumorsCell linesMetastatic transitional cell carcinomaMuscle-invasive bladder cancerER-alpha mRNA levelsT3/T4 tumorsHuman bladder tumor tissuesRT4 cellsBladder cancer cell growthLevels of ERalphaGrade 3 tumorsCancer cellsInvasive bladder cancerTa/T1Transitional cell carcinomaEffects of estradiolRole of bone morphogenetic proteins in transitional cell carcinoma cells
Kim I, Kim S. Role of bone morphogenetic proteins in transitional cell carcinoma cells. Cancer Letters 2006, 241: 118-123. PMID: 16500023, DOI: 10.1016/j.canlet.2005.10.009.Peer-Reviewed Original ResearchMeSH KeywordsBone Morphogenetic ProteinsCarcinoma, Transitional CellCell Line, TumorHumansSignal TransductionUrinary Bladder Neoplasms
2004
Restoration of Bone Morphogenetic Protein Receptor Type II Expression Leads to a Decreased Rate of Tumor Growth in Bladder Transitional Cell Carcinoma Cell Line TSU-Pr1
Kim I, Lee D, Lee D, Kim W, Kim M, Morton R, Lerner S, Kim S. Restoration of Bone Morphogenetic Protein Receptor Type II Expression Leads to a Decreased Rate of Tumor Growth in Bladder Transitional Cell Carcinoma Cell Line TSU-Pr1. Cancer Research 2004, 64: 7355-7360. PMID: 15492256, DOI: 10.1158/0008-5472.can-04-0154.Peer-Reviewed Original ResearchConceptsTSU-Pr1Cell line TSU-Pr1BMP-RIITumor growthBladder transitional cell carcinoma cellsHuman bladder cancer cell linesCell linesTransitional cell carcinoma cellsBladder cancer cell linesBone morphogenetic protein receptor type II (BMPR2) expressionBone morphogenetic proteinTSU-Pr1 cellsBladder TCC tissuesGrowth inhibitory effectsCancer cell linesBladder specimensType II expressionBladder TCCTumor gradeTransitional epitheliumClinical observationsTCC tissuesMalignant cellsSignificant associationBMP-RIA