2020
Named Entity Recognition from Table Headers in Randomized Controlled Trial Articles
Wei Q, Zhou Y, Zhao B, Hu X, Mei Q, Tao C, Xu H. Named Entity Recognition from Table Headers in Randomized Controlled Trial Articles. 2020, 00: 1-2. DOI: 10.1109/ichi48887.2020.9374323.Peer-Reviewed Original ResearchTable headersEntity recognitionDeep learning-based approachBiomedical text miningLearning-based approachNamed Entity RecognitionInformation extractionBiomedical entitiesF1 scoreText miningUnstructured natureBiomedical articlesContextual informationComputational applicationsHeaderSemantic complexityBetter performanceCorpusRecognitionInformationMiningApplicationsImportant informationComplexityBiomedical research
2019
A study of deep learning approaches for medication and adverse drug event extraction from clinical text
Wei Q, Ji Z, Li Z, Du J, Wang J, Xu J, Xiang Y, Tiryaki F, Wu S, Zhang Y, Tao C, Xu H. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Journal Of The American Medical Informatics Association 2019, 27: 13-21. PMID: 31135882, PMCID: PMC6913210, DOI: 10.1093/jamia/ocz063.Peer-Reviewed Original ResearchConceptsDeep learning-based approachDeep learning approachLearning-based approachTraditional machineLearning approachNational NLP Clinical ChallengesAdverse drug event extractionOutperform traditional machineDifferent ensemble approachesConditional Random FieldsSequence labeling approachMIMIC-III databaseEvent extractionMedical domainEntity recognitionClassification componentF1 scoreClinical textRelation extractionClinical documentsVector machineEnd evaluationEnsemble approachClinical corpusMachineIntegrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
Li Z, Yang Z, Shen C, Xu J, Zhang Y, Xu H. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. BMC Medical Informatics And Decision Making 2019, 19: 22. PMID: 30700301, PMCID: PMC6354333, DOI: 10.1186/s12911-019-0736-9.Peer-Reviewed Original ResearchConceptsShortest dependency pathConvolutional neural networkNeural network architectureNatural language processingSentence sequenceRelation extractionClinical relation extractionTarget entityNetwork architectureClinical textNeural networkRepresentation moduleDependency pathsDeep learning-based approachNew neural network architectureBidirectional long short-term memory networkLong short-term memory networkDeep learning frameworkDeep neural networksShort-term memory networkLearning-based approachNovel neural approachRelation extraction datasetBi-LSTM networkSyntactic features
2018
Extraction of BI-RADS findings from breast ultrasound reports in Chinese using deep learning approaches
Miao S, Xu T, Wu Y, Xie H, Wang J, Jing S, Zhang Y, Zhang X, Yang Y, Zhang X, Shan T, Wang L, Xu H, Wang S, Liu Y. Extraction of BI-RADS findings from breast ultrasound reports in Chinese using deep learning approaches. International Journal Of Medical Informatics 2018, 119: 17-21. PMID: 30342682, DOI: 10.1016/j.ijmedinf.2018.08.009.Peer-Reviewed Original ResearchConceptsLearning-based methodsBreast ultrasound reportsElectronic health record systemsTraditional machine learning-based methodsDeep learning-based approachDeep learning-based methodsNatural language processing methodsMachine learning-based methodsDeep learning technologyConditional random field algorithmDeep learning approachLanguage processing methodsLearning-based approachUltrasound reportsBreast cancer researchRule-based methodHealth record systemsBreast radiology reportsLearning technologyNLP approachLearning approachField algorithmDetailed clinical informationWide adoptionRecord system
2016
CD-REST: a system for extracting chemical-induced disease relation in literature
Xu J, Wu Y, Zhang Y, Wang J, Lee H, Xu H. CD-REST: a system for extracting chemical-induced disease relation in literature. Database 2016, 2016: baw036. PMID: 27016700, PMCID: PMC4808251, DOI: 10.1093/database/baw036.Peer-Reviewed Original ResearchConceptsChemical-induced disease relationsWeb servicesBiomedical literatureEntity recognitionMachine learning-based approachLearning-based approachHTTP POST requestRelation extraction systemVector space modelConditional Random FieldsSupport vector machineRelation extraction moduleVast biomedical literatureDisease relation extractionChemical-induced disease relation extractionExtraction moduleDisease relationsAutomatic extractionEnd systemPOST requestRelation extractionNormalization moduleVector machineBioCreative VDemonstration system
2014
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
Tang B, Cao H, Wang X, Chen Q, Xu H. Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks. BioMed Research International 2014, 2014: 240403. PMID: 24729964, PMCID: PMC3963372, DOI: 10.1155/2014/240403.Peer-Reviewed Original ResearchConceptsBiomedical Named Entity RecognitionWord representationsNamed Entity Recognition (NER) taskMachine learning-based approachWord representation featuresNatural language processingLearning-based approachEntity recognition taskNamed Entity RecognitionCluster-based representationJNLPBA corpusEntity recognitionBiomedical domainF-measureLanguage processingRepresentation featuresWord embeddingsRecognition taskWR algorithmDistributional representationsTaskBetter performanceAlgorithmRepresentationDifferent types