2016
A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD)
Wu Y, Denny J, Rosenbloom S, Miller R, Giuse D, Wang L, Blanquicett C, Soysal E, Xu J, Xu H. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). Journal Of The American Medical Informatics Association 2016, 24: e79-e86. PMID: 27539197, PMCID: PMC7651947, DOI: 10.1093/jamia/ocw109.Peer-Reviewed Original ResearchConceptsClinical NLP systemsOpen-source frameworkNLP systemsClinical corpusClinical abbreviationsClinic visit notesSense inventoryKnowledge Extraction SystemAbbreviation recognitionWord sense disambiguation methodDischarge summariesF1 scoreExternal corpusClinical narrativesSense disambiguation methodSystem capabilitiesVanderbilt University Medical CenterWrapperFrequent abbreviationsDisambiguation methodMetaMapAbbreviation identificationCardsVisit notesDisambiguation
2013
Word Sense Disambiguation of clinical abbreviations with hyperdimensional computing.
Moon S, Berster B, Xu H, Cohen T. Word Sense Disambiguation of clinical abbreviations with hyperdimensional computing. AMIA Annual Symposium Proceedings 2013, 2013: 1007-16. PMID: 24551390, PMCID: PMC3900125.Peer-Reviewed Original ResearchConceptsWord sense disambiguationAverage accuracySense disambiguationWord sense disambiguation algorithmSupport vector machineHyperdimensional ComputingNaïve BayesCommon machineClinical documentsVector machineDisambiguation algorithmClinical abbreviationsMedical informationAccurate extractionAlgorithmDisambiguationMachineSuch approachesClinical notesPresent new approachVector transformationNew approachAmbiguous termsComputingAccuracyA prototype application for real-time recognition and disambiguation of clinical abbreviations
Wu Y, Denny J, Rosenbloom S, Miller R, Giuse D, Song M, Xu H. A prototype application for real-time recognition and disambiguation of clinical abbreviations. 2013, 7-8. DOI: 10.1145/2512089.2512096.Peer-Reviewed Original ResearchElectronic health record systemsPrototype applicationClinical documentation systemNatural language processing systemsClinical abbreviationsClinical NLP systemsReal-time recognitionLanguage processing systemAverage response timeHealth record systemsDocumentation systemResponse timeWord sense disambiguation methodNLP systemsNote generationPrototype systemClinical documentsSense disambiguation methodHealthcare recordsProcessing systemAbbreviation disambiguationCard systemDisambiguation methodAbbreviation recognitionSystem design
2011
Detecting abbreviations in discharge summaries using machine learning methods.
Wu Y, Rosenbloom S, Denny J, Miller R, Mani S, Giuse D, Xu H. Detecting abbreviations in discharge summaries using machine learning methods. AMIA Annual Symposium Proceedings 2011, 2011: 1541-9. PMID: 22195219, PMCID: PMC3243185.Peer-Reviewed Original ResearchConceptsNatural language processingMachine learning methodsHighest F-measureF-measureClinical natural language processingLexical resourcesClinical abbreviationsTraining setPre-defined featuresRandom forest classifierDomain expertsML algorithmsML classifiersLanguage processingVoting schemeLearning methodsDischarge summariesForest classifierTest setClassifierCorpus-based methodSetResourcesAlgorithmAbbreviations