2019
Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice
Liu Y, Fang S, Liu L, Zhu Y, Li C, Chen K, Zhao H. Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice. Neuroscience Letters 2019, 717: 134705. PMID: 31870800, PMCID: PMC7004828, DOI: 10.1016/j.neulet.2019.134705.Peer-Reviewed Original ResearchConceptsAPP/PS1 AD miceDistortion product otoacoustic emissionsAuditory brainstem responseAD miceHearing lossAlzheimer's diseaseDisease miceAPP/PS1 Alzheimer's disease miceAPP/PS1 miceAD mouse modelAlzheimer's disease miceMedial geniculate bodyWild-type littermatesCochlear microphonic recordingsProduct otoacoustic emissionsMonths of ageSpatial learning deficitsPS1 miceUpper brainstemABR thresholdFunction testingGeniculate bodyBrainstem responseLateral lemniscusEarly biomarkers
2017
A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall
Mei L, Chen J, Zong L, Zhu Y, Liang C, Jones R, Zhao H. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall. Neurobiology Of Disease 2017, 108: 195-203. PMID: 28823936, PMCID: PMC5675824, DOI: 10.1016/j.nbd.2017.08.002.Peer-Reviewed Original ResearchConceptsCochlear lateral wallEndocochlear potentialHearing lossGap junctional functionDeafness mechanismLateral wallHeterozygous miceCx30 mutationsHair cell degenerationHomozygous knockout miceJunctional functionHeterozygous mouse modelGap junctionsOrgan of CortiSame gap junctional plaquesEP reductionFrequent causePathological changesMouse modelKnockout miceReceptor currentsCell degenerationNormal hearingHeterozygous mutationsMice
2016
Expression and function of pannexins in the inner ear and hearing
Zhao H. Expression and function of pannexins in the inner ear and hearing. BMC Molecular And Cell Biology 2016, 17: 16. PMID: 27229462, PMCID: PMC4896268, DOI: 10.1186/s12860-016-0095-7.Peer-Reviewed Original ResearchConceptsFunction of pannexinsAuditory sensory hair cellsDistinct expression patternsCell apoptotic pathwaysGap junction genesSensory hair cellsGap junction proteinGene familyATP releaseExpression patternsApoptotic pathwayEndocochlear potentialJunction genesPannexinsActive cochlear amplificationPannexin expressionLateral wallCochlear lateral wallJunction proteinsOrgan of CortiHair cellsCritical roleCochlear amplificationIsoformsStria vascularis
2014
Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders
Chen J, Chen J, Zhu Y, Liang C, Zhao H. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochemical And Biophysical Research Communications 2014, 448: 28-32. PMID: 24732355, PMCID: PMC4105360, DOI: 10.1016/j.bbrc.2014.04.016.Peer-Reviewed Original ResearchConceptsAuditory brainstem responseHair cell degenerationKO miceCongenital deafnessEP reductionEndocochlear potentialHearing lossCell degenerationDevelopmental disordersActive cochlear amplificationCx26 knockout miceComplete hearing lossCx26 deficiencyPostnatal day 5Connexin 26 mutationsNonsyndromic hearing lossBrainstem responseMouse modelKnockout miceDay 5Deafness mechanismMajor causeMiceDeafnessDisorders
2012
Cell degeneration is not a primary causer for Connexin26 (GJB2) deficiency associated hearing loss
Liang C, Zhu Y, Zong L, Lu G, Zhao H. Cell degeneration is not a primary causer for Connexin26 (GJB2) deficiency associated hearing loss. Neuroscience Letters 2012, 528: 36-41. PMID: 22975134, PMCID: PMC3467974, DOI: 10.1016/j.neulet.2012.08.085.Peer-Reviewed Original ResearchConceptsHair cell lossAuditory brainstem responseCell degenerationCell lossNeuron degenerationPostnatal developmentCx26 deficiencyCochlear hair cell lossSpiral ganglion neuron degenerationDevelopment disordersCx26 knockout miceHair cellsHair cell functionOuter hair cellsSG neuronsNonsyndromic hearing lossKO miceBrainstem responseCochlear cellsHearing lossBasal turnMouse modelKnockout miceCongenital deafnessSignificant degeneration
2000
Directional rectification of gap junctional voltage gating between Dieters cells in the inner ear of guinea pig
Zhao H. Directional rectification of gap junctional voltage gating between Dieters cells in the inner ear of guinea pig. Neuroscience Letters 2000, 296: 105-108. PMID: 11108992, DOI: 10.1016/s0304-3940(00)01626-8.Peer-Reviewed Original Research