2023
Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise
Liu L, Liang C, Chen J, Fang S, Zhao H. Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise. Science Advances 2023, 9: eadf4144. PMID: 36753545, PMCID: PMC9908021, DOI: 10.1126/sciadv.adf4144.Peer-Reviewed Original ResearchConceptsActive cochlear amplificationCochlear amplificationHeterozygous mutationsPermanent hearing threshold shiftHearing threshold shiftCochlear lateral wallNonsyndromic hearing lossHearing lossMouse modelGeneral populationNoise exposureThreshold shiftHeterozygote carriersHearing sensitivityLateral wallJunction genesGap junction genesPotential generationUnexpected findingExposureMutationsOversensitivityProtein prestinDeafness
2018
Knockout of Pannexin-1 Induces Hearing Loss
Chen J, Liang C, Zong L, Zhu Y, Zhao H. Knockout of Pannexin-1 Induces Hearing Loss. International Journal Of Molecular Sciences 2018, 19: 1332. PMID: 29710868, PMCID: PMC5983795, DOI: 10.3390/ijms19051332.Peer-Reviewed Original ResearchConceptsDistortion product otoacoustic emissionsHearing lossKO miceKO mouse lineMouse linesCochlear microphonicsAuditory brainstem response thresholdActive cochlear amplificationPanx1 KO miceAuditory function testsProduct otoacoustic emissionsKnockout mouse lineFunction testsNonsyndromic hearing lossABR thresholdHearing functionHigh incidenceRecent studiesGap junctional proteinReceptor currentsOtoacoustic emissionsMiceCochlear amplificationConsistent phenotypeResponse threshold
2017
Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing
Zong L, Chen J, Zhu Y, Zhao H. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochemical And Biophysical Research Communications 2017, 489: 223-227. PMID: 28552523, PMCID: PMC5555358, DOI: 10.1016/j.bbrc.2017.05.137.Peer-Reviewed Original ResearchConceptsActive cochlear amplificationHearing lossCochlear amplificationMice ageGap junctionsAge-related hearing lossSignificant hearing lossPostnatal day 25Cochlear gap junctionsAuditory sensory hair cellsSensory hair cellsNonsyndromic hearing lossHigh incidenceOuter pillar cellsDay 25Deiters' cellsConnexin expressionHair cellsConnexin 26Outer hair cell electromotilityHair cell electromotilityPillar cellsPrevious reportsCochleaAge
2016
Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication
Zong L, Zhu Y, Liang R, Zhao H. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellular genetic communication. Scientific Reports 2016, 6: 19884. PMID: 26814383, PMCID: PMC4728487, DOI: 10.1038/srep19884.Peer-Reviewed Original ResearchConceptsGenetic communicationGap junction channelsGene regulationGene expressionIntercellular transferJunction channelsSmall regulatory RNAsNovel mechanismSpecific cell typesPassage of ionsRegulatory RNAsCellular processesOrgan developmentConnexin mutationsDifferent miRNAsRecipient cellsMiRNAsCell typesNeighboring cellsCell proliferationConnexin expressionImportant roleMiRNA levelsGap junctionsCell lines
2015
Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development
Zhu Y, Zong L, Mei L, Zhao H. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Scientific Reports 2015, 5: 15647. PMID: 26490746, PMCID: PMC4614881, DOI: 10.1038/srep15647.Peer-Reviewed Original ResearchConceptsGenetic communicationOrgan developmentInner ear gap junctionsIntercellular communicationGap junctionsCochlear developmentInner ear developmentNon-coding RNAsCx26 knockout miceEar developmentGene expressionIntercellular transferCx26 deficiencyMiR-96 expressionCx30 deficiencyDevelopmental disordersPredominant isoformCell proliferationDeletionCx26Critical roleKnockout miceExpressionMiRNAsMicroRNAsPannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing
Chen J, Zhu Y, Liang C, Chen J, Zhao H. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Scientific Reports 2015, 5: 10762. PMID: 26035172, PMCID: PMC4451810, DOI: 10.1038/srep10762.Peer-Reviewed Original ResearchConceptsCochlear lateral wallATP releaseHearing lossCochlear microphonicsPotential generationReceptor potentialReceptor potential generationHair cell lossLateral wallNon-junctional channelsEP generationDeficient miceCell lossEndocochlear potentialHair cellsPathological processesCochleaPhysiological conditionsJunction genesGap junction genesConnexin hemichannelsConnexin isoformsHearingDeficiencyReleasePannexin 1 deficiency can induce hearing loss
Zhao H, Zhu Y, Liang C, Chen J. Pannexin 1 deficiency can induce hearing loss. Biochemical And Biophysical Research Communications 2015, 463: 143-147. PMID: 26002464, PMCID: PMC4464954, DOI: 10.1016/j.bbrc.2015.05.049.Peer-Reviewed Original ResearchConceptsDistortion product otoacoustic emissionsHearing lossAuditory brainstem response recordingsProgressive hearing lossProduct otoacoustic emissionsHigh incidenceCell degenerationOtoacoustic emissionsGap junction proteinAcoustic stimulationCell apoptotic pathwaysHair cellsResponse recordingsGene mutationsJunction proteinsExtensive expressionCochleaActive cochlear mechanicsGap junctionsApoptotic pathwayDeficiencyHearingCritical roleCochlear mechanics
2014
Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders
Chen J, Chen J, Zhu Y, Liang C, Zhao H. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochemical And Biophysical Research Communications 2014, 448: 28-32. PMID: 24732355, PMCID: PMC4105360, DOI: 10.1016/j.bbrc.2014.04.016.Peer-Reviewed Original ResearchConceptsAuditory brainstem responseHair cell degenerationKO miceCongenital deafnessEP reductionEndocochlear potentialHearing lossCell degenerationDevelopmental disordersActive cochlear amplificationCx26 knockout miceComplete hearing lossCx26 deficiencyPostnatal day 5Connexin 26 mutationsNonsyndromic hearing lossBrainstem responseMouse modelKnockout miceDay 5Deafness mechanismMajor causeMiceDeafnessDisorders
2013
Active cochlear amplification is dependent on supporting cell gap junctions
Zhu Y, Liang C, Chen J, Zong L, Chen G, Zhao H. Active cochlear amplification is dependent on supporting cell gap junctions. Nature Communications 2013, 4: 1786. PMID: 23653198, PMCID: PMC3675877, DOI: 10.1038/ncomms2806.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAuditory ThresholdCochlear Microphonic PotentialsConnexin 26ConnexinsEvoked Potentials, Auditory, Brain StemGap JunctionsGene DeletionGene TargetingHair Cells, Auditory, OuterHearing LossLabyrinth Supporting CellsMiceMice, KnockoutMolecular Motor ProteinsNonlinear DynamicsOtoacoustic Emissions, SpontaneousSpiral GanglionConceptsActive cochlear amplificationOuter hair cellsCell gap junctionsHearing lossCochlear amplificationHair cellsGap junctionsDistortion product otoacoustic emissionsOuter hair cell electromotilityHair cell electromotilitySevere hearing lossProduct otoacoustic emissionsShorter outer hair cellsHair-bundle movementsOuter pillar cellsLeftward shiftOtoacoustic emissionsAcoustic stimulationDeiters' cellsHearing sensitivityConnexin 26Active cochlear mechanicsNovel findingsPillar cellsBundle movementMutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise
Yan D, Zhu Y, Walsh T, Xie D, Yuan H, Sirmaci A, Fujikawa T, Wong A, Loh T, Du L, Grati M, Vlajkovic S, Blanton S, Ryan A, Chen Z, Thorne P, Kachar B, Tekin M, Zhao H, Housley G, King M, Liu X. Mutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 2228-2233. PMID: 23345450, PMCID: PMC3568371, DOI: 10.1073/pnas.1222285110.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnimalsDisease Models, AnimalEvoked Potentials, AuditoryFemaleGenes, DominantHearing Loss, Noise-InducedHearing Loss, SensorineuralHeterozygoteHumansIon Channel GatingMaleMiceMice, Inbred C57BLMice, KnockoutMolecular Sequence DataMutation, MissensePedigreePenetranceReceptors, Purinergic P2X2Sequence Homology, Amino AcidYoung AdultConceptsHigh-frequency hearing lossHearing lossNoise-induced hearing lossAge-related hearing lossProgressive hearing lossSevere progressive hearing lossCoexpression of mutantLoss of ATPLoss of functionNoise exposureNormal hearingReceptor subunitsHuman morbidityP2X2 receptorsMajor causeYoung adultsYoung adulthoodEarly exposureHallmark featureFamily membersReceptorsExposureIndex familyShared causeCause
2012
Cell degeneration is not a primary causer for Connexin26 (GJB2) deficiency associated hearing loss
Liang C, Zhu Y, Zong L, Lu G, Zhao H. Cell degeneration is not a primary causer for Connexin26 (GJB2) deficiency associated hearing loss. Neuroscience Letters 2012, 528: 36-41. PMID: 22975134, PMCID: PMC3467974, DOI: 10.1016/j.neulet.2012.08.085.Peer-Reviewed Original ResearchConceptsHair cell lossAuditory brainstem responseCell degenerationCell lossNeuron degenerationPostnatal developmentCx26 deficiencyCochlear hair cell lossSpiral ganglion neuron degenerationDevelopment disordersCx26 knockout miceHair cellsHair cell functionOuter hair cellsSG neuronsNonsyndromic hearing lossKO miceBrainstem responseCochlear cellsHearing lossBasal turnMouse modelKnockout miceCongenital deafnessSignificant degeneration
2008
Identification and characterization of pannexin expression in the mammalian cochlea
Wang X, Streeter M, Liu Y, Zhao H. Identification and characterization of pannexin expression in the mammalian cochlea. The Journal Of Comparative Neurology 2008, 512: 336-346. PMID: 19009624, PMCID: PMC2630187, DOI: 10.1002/cne.21898.Peer-Reviewed Original ResearchConceptsSpiral ganglion neuronsCochlear lateral wallDiffuse cytoplasmic labelingMammalian cochleaType II fibrocytesOrgan of CortiBlood vessel cellsOuter sulcus cellsWestern blot analysisDistinct cellular distributionGanglion neuronsPolymerase chain reactionGap junctional proteinRat cochleaInterdental cellsStria vascularisPunctate labelingDeiters' cellsSpiral limbusImmunofluorescent stainingCochlear boneHair cellsBasal cellsSpiral prominencePannexin expressionPrestin up-regulation in chronic salicylate (aspirin) administration: An implication of functional dependence of prestin expression
Yu N, Zhu M, Johnson B, Liu Y, Jones R, Zhao H. Prestin up-regulation in chronic salicylate (aspirin) administration: An implication of functional dependence of prestin expression. Cellular And Molecular Life Sciences 2008, 65: 2407-2418. PMID: 18560754, PMCID: PMC2548279, DOI: 10.1007/s00018-008-8195-y.Peer-Reviewed Original ResearchConceptsLong-term administrationPrestin expressionSalicylate administrationChronic salicylate administrationDistortion product otoacoustic emissionsNuclear transcription factors c-fosProduct otoacoustic emissionsTranscription factor c-FosOHC electromotilityHearing lossNF-κBAcute inhibitionOtoacoustic emissionsAdministrationC-fosProtein levelsOuter hair cell electromotilityHair cell electromotilityEgr-1Incremental increaseExpressionSalicylateElectromotilityFour-fold
2006
Prestin is expressed on the whole outer hair cell basolateral surface
Yu N, Zhu M, Zhao H. Prestin is expressed on the whole outer hair cell basolateral surface. Brain Research 2006, 1095: 51-58. PMID: 16709400, PMCID: PMC2548272, DOI: 10.1016/j.brainres.2006.04.017.Peer-Reviewed Original ResearchGap Junctions and Cochlear Homeostasis
Zhao H, Kikuchi T, Ngezahayo A, White T. Gap Junctions and Cochlear Homeostasis. The Journal Of Membrane Biology 2006, 209: 177. PMID: 16773501, PMCID: PMC1609193, DOI: 10.1007/s00232-005-0832-x.Peer-Reviewed Original ResearchConceptsGap junction systemConnexin mutationsHuman deafnessConnective tissue cell gap junction systemEpithelial cell gap junction systemGap junctionsMammalian inner earNon-sensory cellsGap junction networkGap junction functionConnexin genesTransduction processesDifferent connexinsFunctional studiesMutant channelsHereditary deafnessJunction functionSensory cellsCochlear homeostasisMutationsRecycling mechanismCritical roleConnexinsHigh incidenceAnimal models