2016
50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate
Cavus I, Widi GA, Duckrow RB, Zaveri H, Kennard JT, Krystal J, Spencer DD. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate. Epilepsia 2016, 57: 288-297. PMID: 26749134, DOI: 10.1111/epi.13269.Peer-Reviewed Original ResearchConceptsBasal glutamate levelsRefractory epilepsyGlutamate effluxBasal glutamateGlutamate levelsElectrical stimulationEpileptic hippocampusGlutamate releaseSeizure groupHz stimulationBrain glutamate releaseHippocampus of patientsStimulation-induced increaseEpilepsy monitoring unitStimulation-induced changesEpileptogenic hippocampusInduced seizuresSeizure inductionSpontaneous seizuresInterictal levelsGlutamate increaseAtrophic hippocampusElectroencephalography evaluationHippocampal stimulationHippocampal electrodes
2012
Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy
Perez EL, Lauritzen F, Wang Y, Lee TS, Kang D, Zaveri HP, Chaudhry FA, Ottersen OP, Bergersen LH, Eid T. Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy. Neurobiology Of Disease 2012, 47: 331-337. PMID: 22659305, PMCID: PMC3392431, DOI: 10.1016/j.nbd.2012.05.010.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyRecurrent seizuresConcentration of glutamateHippocampal formationLobe epilepsyExtracellular glutamateRefractory temporal lobe epilepsyEpileptogenic hippocampal formationExtracellular brain glutamateSubset of patientsSaline-treated ratsStart of infusionRatio of glutamateExcessive glutamateGlutamate excessBrain glutamateExtracellular brainAstrocytesExcessive releaseGS deficiencyRatsSeizuresGlutamateSeparate groupsEpilepsy
2008
Local spatial effect of 50 Hz cortical stimulation in humans
Gwinn RP, Spencer DD, Spencer SS, Duckrow RB, Vives K, Wu K, Tkeshelashvili D, Zaveri HP. Local spatial effect of 50 Hz cortical stimulation in humans. Epilepsia 2008, 49: 1602-1610. PMID: 18435750, DOI: 10.1111/j.1528-1167.2008.01628.x.Peer-Reviewed Original ResearchConceptsCortical stimulationStimulation amplitudeBipolar stimulationFunctional cortical mappingSeizure activityFunctional mapping proceduresCortical mappingEfficacious treatmentSubdural electrodesCortical activityStimulation parametersHuman investigationsStimulating parametersStimulationTissue volumeElectrode placementCortical surfacePatientsGreater increaseBaselineFunctional mappingGamma bandBand powerStimuliS poststimulation
2007
Neocortical and Thalamic Spread of Amygdala Kindled Seizures
Blumenfeld H, Rivera M, Vasquez JG, Shah A, Ismail D, Enev M, Zaveri HP. Neocortical and Thalamic Spread of Amygdala Kindled Seizures. Epilepsia 2007, 48: 254-262. PMID: 17295618, DOI: 10.1111/j.1528-1167.2006.00934.x.Peer-Reviewed Original ResearchConceptsFrontal cortexMedial thalamusInterictal periodNervous systemSimultaneous field potential recordingsAmygdala-Kindled SeizuresResult of kindlingDevelopment of epilepsyNetwork plasticityField potential recordingsSeizure durationBehavioral seizuresMotor seizuresKindled SeizuresAmygdala kindlingEpilepsy modelSeizuresKindlingPotential recordingsNeocortical circuitsCortexBehavioral severityWeak stimulationThalamusPossible role