Featured Publications
Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials
Oikonomou EK, Spatz ES, Suchard MA, Khera R. Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials. The Lancet Digital Health 2022, 4: e796-e805. PMID: 36307193, PMCID: PMC9768739, DOI: 10.1016/s2589-7500(22)00170-4.Peer-Reviewed Original ResearchConceptsSystolic blood pressure controlBlood pressure controlIntensive systolic blood pressure controlType 2 diabetesPressure controlCardiovascular benefitsClinical trialsMajor adverse cardiovascular eventsFirst major adverse cardiovascular eventLarge randomised clinical trialsACCORD-BP trialAdverse cardiovascular eventsRandomised clinical trialsSystolic blood pressureCox regression analysisTreatment effectsHazard ratio estimatesACCORD-BPBP trialCardiovascular eventsBlood pressurePrimary outcomeStandard treatmentBaseline variablesIndex patientsA novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, Thomas KE, Thomas S, Akoumianakis I, Fan LM, Kesavan S, Herdman L, Alashi A, Centeno EH, Lyasheva M, Griffin BP, Flamm SD, Shirodaria C, Sabharwal N, Kelion A, Dweck MR, Van Beek EJR, Deanfield J, Hopewell JC, Neubauer S, Channon KM, Achenbach S, Newby DE, Antoniades C. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. European Heart Journal 2019, 40: 3529-3543. PMID: 31504423, PMCID: PMC6855141, DOI: 10.1093/eurheartj/ehz592.Peer-Reviewed Original ResearchConceptsPerivascular adipose tissueFat attenuation indexCoronary CT angiographyCardiac risk predictionCoronary perivascular adipose tissueMajor adverse cardiac eventsCT angiographyRisk predictionHigh-risk plaque featuresPerivascular fat attenuation indexRadiomic featuresAdverse cardiac eventsConsecutive eligible participantsSCOT-HEART trialTraditional risk stratificationCoronary artery diseaseCoronary calcium scoreStandard coronary CT angiographyAcute myocardial infarctionCoronary inflammationCardiac eventsArtery diseaseCalcium scoreCardiac surgeryMACE prediction
2023
Machine learning in precision diabetes care and cardiovascular risk prediction
Oikonomou E, Khera R. Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovascular Diabetology 2023, 22: 259. PMID: 37749579, PMCID: PMC10521578, DOI: 10.1186/s12933-023-01985-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsArtificial IntelligenceCardiovascular DiseasesDiabetes MellitusHeart Disease Risk FactorsHumansMachine LearningRisk FactorsConceptsArtificial intelligence solutionsArtificial intelligence productsData-driven methodIntelligence solutionsArtificial intelligenceMachine learningPersonalized solutionsIntelligence productsBias mitigationMachineKey issuesPredictive modelSuch modelsSuccessful applicationRisk predictionParadigm shiftIntelligenceKey propertiesApplicationsLearningPersonalized careFrameworkSolutionCurrent regulatory frameworkHealthcare
2020
Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease
Oikonomou EK, Siddique M, Antoniades C. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovascular Research 2020, 116: 2040-2054. PMID: 32090243, PMCID: PMC7585409, DOI: 10.1093/cvr/cvaa021.Peer-Reviewed Original ResearchConceptsCardiac computed tomographyNon-invasive imagingCardiovascular imagingCardiovascular diseaseNon-invasive cardiovascular imagingCardiac CTCardiovascular risk stratificationFirst-line optionImportant clinical implicationsRisk stratificationUnstable patientsClinical careComputed tomographyCurrent evidenceClinical implicationsCardiac imagingRadiomics approachPatientsRadiomics methodTissue biologyCardiovascular diagnosticsDiseaseFuture studiesImagingPhenotyping