An information network flow approach for measuring functional connectivity and predicting behavior
Kumar S, Yoo K, Rosenberg MD, Scheinost D, Constable RT, Zhang S, Li C, Chun MM. An information network flow approach for measuring functional connectivity and predicting behavior. Brain And Behavior 2019, 9: e01346. PMID: 31286688, PMCID: PMC6710195, DOI: 10.1002/brb3.1346.Peer-Reviewed Original ResearchConceptsFunctional brain connectivityFunctional magnetic resonance imagingFMRI time coursesIndividual differencesTask performanceMeasures of attentionSustained attention taskAttention task performanceResting-state fMRI dataSample of individualsAttention taskFMRI dataFunctional connectivityFC patternsBrain connectivityPearson correlationInformation theory statisticsInformation flowMachine-learning modelsMeasuresMagnetic resonance imagingAttentionNetwork flow approachTime courseDifferent datasetsMultivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors
Yoo K, Rosenberg MD, Noble S, Scheinost D, Constable RT, Chun MM. Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors. NeuroImage 2019, 197: 212-223. PMID: 31039408, PMCID: PMC6591084, DOI: 10.1016/j.neuroimage.2019.04.060.Peer-Reviewed Original ResearchConceptsFunctional brain organizationFunctional connectivityFunctional connectivity featuresTest-retest sampleMultivariate functional connectivityCognitive skillsMental representationsIndividual differencesFMRI measuresBrain organizationBrain statesStrong predictionSpatial activity patternsFMRI datasetsConnectivity featuresIndividual behaviorProject samplesConnectivity estimatesTimecoursesActivity patternsCognitionPearson correlationIndividualsConnectivityUnivariate approach