2006
Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions
Miyauchi K, Curran R, Matthews E, Komano J, Hoshino T, Engelman D, Matsuda Z. Mutations of Conserved Glycine Residues within the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 gp41 Can Inhibit Membrane Fusion and Incorporation of Env onto Virions. Japanese Journal Of Infectious Diseases 2006, 59: 77-84. PMID: 16632906, DOI: 10.7883/yoken.jjid.2006.77.Peer-Reviewed Original Research
2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesisComputation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer
Fleming K, Engelman D. Computation and mutagenesis suggest a right‐handed structure for the synaptobrevin transmembrane dimer. Proteins Structure Function And Bioinformatics 2001, 45: 313-317. PMID: 11746678, DOI: 10.1002/prot.1151.Peer-Reviewed Original ResearchConceptsTransmembrane dimerSingle transmembrane segmentBiological membrane fusionProtein-protein interactionsRight-handed structureInterhelical hydrogen bondsSequence-specific mannerTransmembrane segmentsDimerization motifThree-dimensional structureMutagenesis studiesMembrane fusionSuccessful structure predictionSide-chain atomsStructure predictionSpecific mannerKey playersComputational searchDimersSynaptobrevinMutagenesisComputational methodsAssociation thermodynamicsMotifGlycophorin
2000
HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original Research
1999
Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne
Fisher L, Engelman D, Sturgis J. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne. Journal Of Molecular Biology 1999, 293: 639-651. PMID: 10543956, DOI: 10.1006/jmbi.1999.3126.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceButyratesCircular DichroismDetergentsDimerizationEnergy TransferFluorescent DyesGlycophorinsHumansKineticsMicellesMolecular Sequence DataPeptide FragmentsPhosphorylcholineProtein Structure, SecondaryQuaternary Ammonium CompoundsSodium Dodecyl SulfateSolventsSpectrometry, FluorescenceThermodynamicsConceptsSpecific chemical interactionsFörster resonance energy transferResonance energy transferSodium dodecyl sulfateComplex solventChemical interactionFar-UV circular dichroismCircular dichroismDodecyl sulfateTransmembrane helix associationDetergent micellesHelix associationEnergy transferThermodynamic measurementsHelix formationObserved KdZwitterionic detergentSecondary structureDimerizationG. von HeijneHelix dimerizationOrders of magnitudeDetergentsTransmembrane helicesTransmembrane domainA Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering
Bu Z, Engelman D. A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering. Biophysical Journal 1999, 77: 1064-1073. PMID: 10423450, PMCID: PMC1300396, DOI: 10.1016/s0006-3495(99)76956-0.Peer-Reviewed Original ResearchMeSH KeywordsBiophysical PhenomenaBiophysicsButyratesDetergentsDimerizationElectrochemistryGlycophorinsHumansIn Vitro TechniquesMembrane ProteinsMicellesMolecular WeightMutationProtein ConformationProtein Structure, SecondaryQuaternary Ammonium CompoundsRecombinant Fusion ProteinsScattering, RadiationSolutionsSolventsX-RaysConceptsDetergent micellesTransmembrane domainAlpha-helical transmembrane domainsSolution small-angle X-ray scatteringTransmembrane helix associationSolution small-angle X-rayHuman erythrocyte glycophorin ASmall-angle X-ray scatteringMembrane proteinsTransmembrane proteinErythrocyte glycophorin ACarboxyl terminusHelix associationAngle X-ray scatteringGlycophorin AStaphylococcal nucleaseSmall-angle X-rayProteinModel systemMicelle contributionX-ray scatteringAngle X-rayDimerizationGyration analysisN-dodecyl
1998
Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1997
STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER
Arkin I, Adams P, Brünger A, Smith S, Engelman D. STRUCTURAL PERSPECTIVES OF PHOSPHOLAMBAN, A HELICAL TRANSMEMBRANE PENTAMER. Annual Review Of Biophysics 1997, 26: 157-179. PMID: 9241417, DOI: 10.1146/annurev.biophys.26.1.157.Peer-Reviewed Original ResearchTwo EGF molecules contribute additively to stabilization of the EGFR dimer
Lemmon M, Bu Z, Ladbury J, Zhou M, Pinchasi D, Lax I, Engelman D, Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. The EMBO Journal 1997, 16: 281-294. PMID: 9029149, PMCID: PMC1169635, DOI: 10.1093/emboj/16.2.281.Peer-Reviewed Original ResearchConceptsEpidermal growth factorReceptor dimerizationEGF moleculesPrecise molecular detailsHuman growth hormone receptorReceptor-receptor interactionsGrowth factorInterferon-gamma receptorEGFR dimersSignaling eventsMolecular detailsReceptor oligomerizationGrowth hormone receptorExtracellular domainEGFR familyCell surfaceMonomer bindsSubsequent associationDimerizationHormone receptorsTitration calorimetrySmall-angle X-ray scatteringBindingReceptorsMultivalent binding
1996
Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts
MacKenzie K, Prestegard J, Engelman D. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts. Journal Of Biomolecular NMR 1996, 7: 256-260. PMID: 8785502, DOI: 10.1007/bf00202043.Peer-Reviewed Original ResearchConceptsChemical shiftsPeptide dimersΑ-carbonSide chainsSide-chain rotamer populationsCarbon-carbon couplingLeucine side chainsThree-bond J couplingsNMR pulse sequencesΔ-methyl groupsRotamer populationsMethyl carbonFast exchangeSide-chain rotamersJ-couplingsTransmembrane peptidesDimer interfaceRotameric statesProtein systemsRotamersShift distributionGlycophorin A.DimersChainMethylFourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban
Ludlam C, Arkin I, Liu X, Rothman M, Rath P, Aimoto S, Smith S, Engelman D, Rothschild K. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophysical Journal 1996, 70: 1728-1736. PMID: 8785331, PMCID: PMC1225141, DOI: 10.1016/s0006-3495(96)79735-7.Peer-Reviewed Original ResearchConceptsSite-directed isotope labelingLocal secondary structureIsotope labelingSecondary structureSelective ion channelsTotal reflection Fourier transformPeptide amide groupsAmide IReflection Fourier transformDeuterium/hydrogen exchangeTransmembrane domainMembrane domainsMembrane proteinsTransmembrane orientationAmino acid fragmentSpectroscopic characterizationIon channelsHydrophobic regionAmide carbonylProtein backboneCardiac muscle cellsAmide groupLipid bilayersATPase activityFourier transform
1995
Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes
Arkin I, Rothman M, Ludlam C, Aimoto S, Engelman D, Rothschild K, Smith S. Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes. Journal Of Molecular Biology 1995, 248: 824-834. PMID: 7752243, DOI: 10.1006/jmbi.1995.0263.Peer-Reviewed Original ResearchConceptsSelective ion conductanceTransmembrane domainAmino acid residuesN-terminal 30 amino acid residuesAcid residuesCircular dichroismPentameric protein complexFull-length proteinC-terminal 22 amino acid residuesPhospholipid membranesIon channel complexTransmembrane helicesProtein complexesPhosphorylation sitesMembrane proteinsIon conductanceCarboxy terminusHelix bundleIon poreReticulum membraneInhibitory complexLong helixPentameric complexSecondary structureProtein
1994
A dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction
1989
Limitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurements
Burks C, Hong S, Ho M, Engelman D. Limitations of the lipid state hypothesis for atherosclerosis are revealed by X-ray diffraction measurements. Atherosclerosis 1989, 77: 43-51. PMID: 2719761, DOI: 10.1016/0021-9150(89)90008-7.Peer-Reviewed Original Research
1976
Compositional mapping of cholesteryl ester droplets in the fatty streaks of human aorta.
Hillman G, Engelman D. Compositional mapping of cholesteryl ester droplets in the fatty streaks of human aorta. Journal Of Clinical Investigation 1976, 58: 1008-1018. PMID: 965482, PMCID: PMC333265, DOI: 10.1172/jci108524.Peer-Reviewed Original ResearchMolecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.
Engelman D, Hillman G. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta. Journal Of Clinical Investigation 1976, 58: 997-1007. PMID: 965500, PMCID: PMC333264, DOI: 10.1172/jci108554.Peer-Reviewed Original Research
1969
Surface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell
ENGELMAN D. Surface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell. Nature 1969, 223: 1279-1280. PMID: 5811911, DOI: 10.1038/2231279a0.Peer-Reviewed Original Research