2001
Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesis
2000
Interhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResiduesStatistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von Heijne
Senes A, Gerstein M, Engelman D. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions11Edited by G. von Heijne. Journal Of Molecular Biology 2000, 296: 921-936. PMID: 10677292, DOI: 10.1006/jmbi.1999.3488.Peer-Reviewed Original ResearchAmino Acid MotifsAmino Acid SubstitutionAmino Acids, Branched-ChainBiasBinding SitesCell MembraneDatabases, FactualDimerizationGlycineGlycophorinsIsoleucineMathematicsMembrane ProteinsModels, MolecularMolecular WeightOdds RatioPliabilityProtein FoldingProtein Structure, SecondaryThermodynamicsValine
1999
TOXCAT: A measure of transmembrane helix association in a biological membrane
Russ W, Engelman D. TOXCAT: A measure of transmembrane helix association in a biological membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 863-868. PMID: 9927659, PMCID: PMC15316, DOI: 10.1073/pnas.96.3.863.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBase SequenceCarrier ProteinsCell MembraneChloramphenicol O-AcetyltransferaseDNA PrimersDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGene LibraryGenes, ReporterGenetic Complementation TestMacromolecular SubstancesMaltose-Binding ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMonosaccharide Transport ProteinsPeriplasmic Binding ProteinsProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsSpheroplastsTranscription FactorsConceptsTOXCAT systemDetergent micellesHelical membrane proteinsN-terminal DNATransmembrane helix associationTransmembrane alpha-helixReporter gene encoding chloramphenicolNatural membrane environmentGene encoding chloramphenicolTransmembrane domainTM associationTM dimerizationMembrane proteinsMembrane environmentOligomerization motifPolar residuesAlpha-helixHelix associationSequence specificityChimeric constructsCAT expressionBiological membranesFundamental eventNoncovalent associationAssay distinguishes
1997
The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelix
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssembly
1987
Transmembrane topography of the nicotinic acetylcholine receptor delta subunit.
McCrea P, Popot J, Engelman D. Transmembrane topography of the nicotinic acetylcholine receptor delta subunit. The EMBO Journal 1987, 6: 3619-3626. PMID: 3428268, PMCID: PMC553829, DOI: 10.1002/j.1460-2075.1987.tb02693.x.Peer-Reviewed Original ResearchConceptsDisulfide bridgesAcetylcholine receptor delta subunitIntermolecular disulfide bridgesTransmembrane topographyTransmembrane segmentsTransmembrane crossingReceptor delta subunitCellular locationC-terminusN-terminusDelta subunitNicotinic acetylcholine receptorsSubunitsElectric organVesiclesPermeability barrierTorpedo marmorataVesicle systemAcetylcholine receptorsDiphtheria toxinAqueous spaceDimers
1985
Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis
Dumont M, Trewhella J, Engelman D, Richards F. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis. The Journal Of Membrane Biology 1985, 88: 233-247. PMID: 3913776, DOI: 10.1007/bf01871088.Peer-Reviewed Original ResearchConceptsMolecular weight distributionFragments of bacteriorhodopsinVisible absorption spectraX-ray diffractionX-ray diffraction patternsDiffraction patternsAqueous mediaNative purple membraneUrea-polyacrylamide gel electrophoresisWeight distributionSmall soluble peptidesAbsorption spectraHydrophobic segmentsBacteriorhodopsin sequenceAmino acid analysisHigh-pressure liquid chromotographyPolyacrylamide gel electrophoresisDigestion conditionsPurple membraneOptical absorptionSoluble peptidesBacteriorhodopsinMembrane-embedded regionsLiquid chromotographyProducts of digestion
1981
The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis
Engelman D, Steitz T. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis. Cell 1981, 23: 411-422. PMID: 7471207, DOI: 10.1016/0092-8674(81)90136-7.Peer-Reviewed Original ResearchConceptsMembrane proteinsSecreted proteinsIntegral membrane proteinsHydrophobic leader peptideSecretion of proteinsHelical hairpinSpecific membrane receptorsPolypeptide sequenceSecond helixLeader peptideTransport proteinsLipid environmentTerminal helixN-terminusSpontaneous insertionMembrane receptorsHairpin structurePolypeptide structureProteinHelixHairpinHydrophobic interiorOnly alphaNonpolar sequencesHydrophobic portion
1980
Neutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinas
Yeager M, Schoenborn B, Engelman D, Moore P, Stryer L. Neutron diffraction analysis of the structure of rod photoreceptor membranes in intact retinas. Journal Of Molecular Biology 1980, 137: 315-348. PMID: 6973637, DOI: 10.1016/0022-2836(80)90319-8.Peer-Reviewed Original Research
1976
The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii
Wallace B, Richards F, Engelman D. The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii. Journal Of Molecular Biology 1976, 107: 255-269. PMID: 1003469, DOI: 10.1016/s0022-2836(76)80004-6.Peer-Reviewed Original Research
1972
The molecular structure of the membrane of Acholeplasma laidlawii
Engelman D. The molecular structure of the membrane of Acholeplasma laidlawii. Chemistry And Physics Of Lipids 1972, 8: 298-302. PMID: 5041943, DOI: 10.1016/0009-3084(72)90058-8.Peer-Reviewed Original Research
1971
Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques
Metcalfe J, Metcalfe S, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by X-ray diffraction and nuclear magnetic resonance techniques. Biochimica Et Biophysica Acta 1971, 241: 412-421. PMID: 5159791, DOI: 10.1016/0005-2736(71)90041-1.Peer-Reviewed Original ResearchMeSH KeywordsAcetoneAcholeplasma laidlawiiAlcoholsBacterial ProteinsBenzyl CompoundsBinding SitesCell MembraneCentrifugation, Density GradientChemical PrecipitationDetergentsDeuteriumDialysisErythrocytesLipidsMacromolecular SubstancesMagnetic Resonance SpectroscopyMicroscopy, ElectronMycoplasmaSulfatesUltracentrifugationX-Ray DiffractionConceptsRelaxation measurementsMagnetic relaxation measurementsNuclear magnetic relaxation measurementsNuclear magnetic resonance techniquesNative membranesProbe experimentsX-ray diffraction patternsX-ray diffractionMagnetic resonance techniquesSodium dodecyl sulfateLipid bilayer structureProbe techniqueProbe moleculesBenzyl alcoholResonance techniquesDiffraction patternsBilayer regionsDodecyl sulfateBilayer structureElectron microscopyMembrane systemStructural comparisonMeasurementsMembraneDiffractionStructural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes using a fluorescence probe
Metcalfe S, Metcalfe J, Engelman D. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes using a fluorescence probe. Biochimica Et Biophysica Acta 1971, 241: 422-430. PMID: 5159792, DOI: 10.1016/0005-2736(71)90042-3.Peer-Reviewed Original ResearchLipid bilayer structure in the membrane of Mycoplasma laidlawii
Engelman D. Lipid bilayer structure in the membrane of Mycoplasma laidlawii. Journal Of Molecular Biology 1971, 58: 153-165. PMID: 5088924, DOI: 10.1016/0022-2836(71)90238-5.Peer-Reviewed Original Research
1970
X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii
Engelman D. X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawii. Journal Of Molecular Biology 1970, 47: 115-117. PMID: 5413340, DOI: 10.1016/0022-2836(70)90407-9.Peer-Reviewed Original Research
1969
CURRENT MODELS FOR THE STRUCTURE OF BIOLOGICAL MEMBRANES
Stoeckenius W, Engelman D. CURRENT MODELS FOR THE STRUCTURE OF BIOLOGICAL MEMBRANES. Journal Of Cell Biology 1969, 42: 613-646. PMID: 4895596, PMCID: PMC2107701, DOI: 10.1083/jcb.42.3.613.Peer-Reviewed Original ResearchSurface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell
ENGELMAN D. Surface Area per Lipid Molecule in the Intact Membrane of the Human Red Cell. Nature 1969, 223: 1279-1280. PMID: 5811911, DOI: 10.1038/2231279a0.Peer-Reviewed Original Research