2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesisGenetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesisConversion of Phospholamban into a Soluble Pentameric Helical Bundle †
Li H, Cocco M, Steitz T, Engelman D. Conversion of Phospholamban into a Soluble Pentameric Helical Bundle †. Biochemistry 2001, 40: 6636-6645. PMID: 11380258, DOI: 10.1021/bi0026573.Peer-Reviewed Original ResearchConceptsMembrane proteinsLipid-exposed surfaceMembrane protein phospholambanLaser lightX-ray scatteringTransmembrane domainHelical bundleWild-type phospholambanOligomeric stateNative phospholambanPolar residuesSimilar foldHydrophobic residuesSoluble proteinReticulum membraneSmall-angle X-ray scatteringHelical pentamersProtein phospholambanSoluble variantProteinNatural proteinsNMR experimentsNative contactsMultiangle laser lightSarcoplasmic reticulum membranesPolar residues drive association of polyleucine transmembrane helices
Zhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.Peer-Reviewed Original ResearchConceptsPolar residuesPolyleucine sequenceHelix associationTransmembrane helix associationInterhelical hydrogen bondingTransmembrane protein functionTransmembrane helicesForm homoProtein functionTransmembrane proteinDrive associationMembrane proteinsDetergent micellesAsparagine residuesGeneral structural featuresBiological membranesResiduesOligomerization specificityProteinSequenceHelixStructural flexibilitySuch interactionsStructural featuresHeterooligomers
1999
A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering
Bu Z, Engelman D. A Method for Determining Transmembrane Helix Association and Orientation in Detergent Micelles Using Small Angle X-Ray Scattering. Biophysical Journal 1999, 77: 1064-1073. PMID: 10423450, PMCID: PMC1300396, DOI: 10.1016/s0006-3495(99)76956-0.Peer-Reviewed Original ResearchMeSH KeywordsBiophysical PhenomenaBiophysicsButyratesDetergentsDimerizationElectrochemistryGlycophorinsHumansIn Vitro TechniquesMembrane ProteinsMicellesMolecular WeightMutationProtein ConformationProtein Structure, SecondaryQuaternary Ammonium CompoundsRecombinant Fusion ProteinsScattering, RadiationSolutionsSolventsX-RaysConceptsDetergent micellesTransmembrane domainAlpha-helical transmembrane domainsSolution small-angle X-ray scatteringTransmembrane helix associationSolution small-angle X-rayHuman erythrocyte glycophorin ASmall-angle X-ray scatteringMembrane proteinsTransmembrane proteinErythrocyte glycophorin ACarboxyl terminusHelix associationAngle X-ray scatteringGlycophorin AStaphylococcal nucleaseSmall-angle X-rayProteinModel systemMicelle contributionX-ray scatteringAngle X-rayDimerizationGyration analysisN-dodecylTOXCAT: A measure of transmembrane helix association in a biological membrane
Russ W, Engelman D. TOXCAT: A measure of transmembrane helix association in a biological membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 863-868. PMID: 9927659, PMCID: PMC15316, DOI: 10.1073/pnas.96.3.863.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBase SequenceCarrier ProteinsCell MembraneChloramphenicol O-AcetyltransferaseDNA PrimersDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGene LibraryGenes, ReporterGenetic Complementation TestMacromolecular SubstancesMaltose-Binding ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMonosaccharide Transport ProteinsPeriplasmic Binding ProteinsProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsSpheroplastsTranscription FactorsConceptsTOXCAT systemDetergent micellesHelical membrane proteinsN-terminal DNATransmembrane helix associationTransmembrane alpha-helixReporter gene encoding chloramphenicolNatural membrane environmentGene encoding chloramphenicolTransmembrane domainTM associationTM dimerizationMembrane proteinsMembrane environmentOligomerization motifPolar residuesAlpha-helixHelix associationSequence specificityChimeric constructsCAT expressionBiological membranesFundamental eventNoncovalent associationAssay distinguishes
1998
Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a
ADAMS P, LEE A, BRÜNGER A, ENGELMAN D. Models for the Transmembrane Region of the Phospholamban Pentamer: Which Is Correct?a. Annals Of The New York Academy Of Sciences 1998, 853: 178-185. PMID: 10603945, DOI: 10.1111/j.1749-6632.1998.tb08265.x.Peer-Reviewed Original Research
1997
The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelixA Transmembrane Helix Dimer: Structure and Implications
MacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications. Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.Peer-Reviewed Original ResearchConceptsMembrane-spanning alpha helicesSolution nuclear magnetic resonance spectroscopyDimeric transmembrane domainNuclear magnetic resonance spectroscopyTransmembrane helix dimerVan der Waals interactionsDer Waals interactionsAqueous detergent micellesIntermonomer hydrogen bondsTransmembrane helicesTransmembrane domainMagnetic resonance spectroscopyThree-dimensional structureDetergent micellesHelix dimerHydrogen bondsWaals interactionsAlpha-helixResonance spectroscopyGlycophorin ASpecific associationHelixSequence dependenceMicellesSpectroscopyDimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1995
Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban
Adams P, Arkin I, Engelman D, Brünger A. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nature Structural & Molecular Biology 1995, 2: 154-162. PMID: 7749920, DOI: 10.1038/nsb0295-154.Peer-Reviewed Original ResearchConceptsPentameric ion channelsTransmembrane domainThree-dimensional structureMembrane proteinsHydrophobic residuesΑ-helixIon channelsComputational searchingEnvironmental constraintsTwo-bodyGlobal searchPhospholambanMutagenesisComputational methodsHomopentamerProteinExperimental dataResiduesData yields