2001
Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesis
2000
Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne
Petrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne. Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.Peer-Reviewed Original ResearchMeSH Keywords1,2-DipalmitoylphosphatidylcholineAlgorithmsAmino Acid MotifsAmino Acid SequenceBinding SitesComputer SimulationDimerizationDimyristoylphosphatidylcholineGlycophorinsLipid BilayersModels, MolecularMolecular Sequence DataNuclear Magnetic Resonance, BiomolecularPeptide FragmentsPhosphatidylcholinesProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsConceptsMonomer formLipid bilayersLipid chain lengthUnfavorable electrostatic repulsionLipid typeMolecular dynamics simulationsExplicit lipid bilayerElectrostatic repulsionMonomeric helicesLipid-lipid interactionsInteraction enthalpiesChain lengthDimer structureEnergetic propertiesCHARMM potentialInteraction energyAccessible volumeDynamics simulationsLipid propertiesUnsaturated lipidsEnthalpy calculationsLipid environmentBilayer thicknessAcyl chainsThermodynamic treatment
1996
Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †
Peled-Zehavi H, Arkin I, Engelman D, Shai Y. Coassembly of Synthetic Segments of Shaker K+ Channel within Phospholipid Membranes †. Biochemistry 1996, 35: 6828-6838. PMID: 8639634, DOI: 10.1021/bi952988t.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsOligomerization of proteinsMembrane-embedded segmentsMembrane-mimetic environmentsAlpha-helical contentAlpha-helical structureLipid/peptide molar ratioS4 regionShaker potassium channelSecondary structure studiesResonance energy transfer measurementsPhospholipid membranesZwitterionic phospholipid vesiclesTransmembrane segmentsMembrane proteinsPhospholipid milieuMimetic environmentsSynthetic segmentsFirst repeatS4 sequenceEel sodium channelS4 segmentEnergy transfer measurementsSecondary structure
1991
Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation.
Kataoka M, Head J, Persechini A, Kretsinger R, Engelman D. Small-angle X-ray scattering studies of calmodulin mutants with deletions in the linker region of the central helix indicate that the linker region retains a predominantly alpha-helical conformation. Biochemistry 1991, 30: 1188-92. PMID: 1991098, DOI: 10.1021/bi00219a004.Peer-Reviewed Original ResearchConceptsLinker regionCentral helixCalcium-dependent conformational changeWild-type proteinCentral linker regionSmall-angle X-rayAlpha-helical conformationGlu-84Calmodulin mutantsMutant formsGlu-83Wild typeMutantsNative proteinConformational changesCalmodulinProteinSer-81DeletionPresence of Ca2Binding of melittinSignificant size changesGlobular conformationRadius of gyrationHelix
1989
Melittin binding causes a large calcium-dependent conformational change in calmodulin.
Kataoka M, Head J, Seaton B, Engelman D. Melittin binding causes a large calcium-dependent conformational change in calmodulin. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 6944-6948. PMID: 2780551, PMCID: PMC297967, DOI: 10.1073/pnas.86.18.6944.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBee VenomsBrainCalciumCalmodulinCattleKineticsMagnesiumMelittenProtein BindingProtein ConformationX-Ray DiffractionConceptsConformational changesCalcium-dependent conformational changeDependent conformational changesCellular functionsTarget proteinsMelittin bindsCalmodulin functionCalmodulinSolution structureCalmodulin-melittin complexSmall-angle X-ray scatteringConformation changeAbsence of calciumCompetitive inhibitorOverall structureMelittin bindingTarget peptideMelittinPresence of calciumGlobular shapeCa2PeptidesX-ray scatteringProteinBinds
1984
Inelastic Neutron Scattering Studies of Hexokinase in Solution
Engelman D, Dianoux A, Cusack S, Jacrot B. Inelastic Neutron Scattering Studies of Hexokinase in Solution. Basic Life Sciences 1984, 27: 365-380. PMID: 6712571, DOI: 10.1007/978-1-4899-0375-4_22.Peer-Reviewed Original ResearchConceptsNeutron scatteringInelastic Neutron Scattering StudyInelastic neutron scatteringInstitute Laue-LangevinNeutron Scattering StudyBiological macromoleculesMolecular dynamicsInelastic scatteringExcited modesScattering StudyScatteringSuch measurementsSuch experimentsDynamic propertiesMacromoleculesSolutionProperties
1982
Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose
Jacrot B, Cusack S, Dianoux A, Engelman D. Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose. Nature 1982, 300: 84-86. PMID: 6752726, DOI: 10.1038/300084a0.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesGlucoseHexokinaseNeutronsProtein BindingProtein ConformationSaccharomyces cerevisiaeScattering, RadiationConceptsInelastic neutron scatteringInelastic neutronField of biophysicsAtomic motionNeutron scatteringDynamical informationDynamical behaviorLimited experimental informationExperimental informationTemperature dependenceBiological macromoleculesWide frequencyTheoretical understandingMean positionNeutronsScatteringDynamicsInternal mobilityMotionDependenceBiophysicsFrequencyFluctuationsFieldExistence
1979
Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase.
Pickover C, McKay D, Engelman D, Steitz T. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. Journal Of Biological Chemistry 1979, 254: 11323-11329. PMID: 387770, DOI: 10.1016/s0021-9258(19)86488-8.Peer-Reviewed Original ResearchConceptsYeast phosphoglycerate kinasePhosphoglycerate kinaseConformational changesTernary complexSubstrate bindingHinge motionKinaseSubstrate MgATPCleft closureSmall-angle X-raySeparate bindingRadius of gyrationAngle X-rayMgATPBindingApparent similarityComplexesCleftEnzymeObserved changesHexokinaseGyration decreasesDomainSimilarityYeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate.
McDonald R, Steitz T, Engelman D. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry 1979, 18: 338-42. PMID: 369601, DOI: 10.1021/bi00569a017.Peer-Reviewed Original Research
1978
X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit
LAUGHREA M, ENGELMAN D, MOORE P. X‐Ray and Neutron Small‐Angle Scattering Studies of the Complex between Protein S1 and the 30‐S Ribosomal Subunit. The FEBS Journal 1978, 85: 529-534. PMID: 348475, DOI: 10.1111/j.1432-1033.1978.tb12268.x.Peer-Reviewed Original Research
1975
Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7.
Engelman D, Moore P, Schoenborn B. Neutron scattering measurements of separation and shape of proteins in 30S ribosomal subunit of Escherichia coli: S2-S5, S5-S8, S3-S7. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 3888-3892. PMID: 1105567, PMCID: PMC433101, DOI: 10.1073/pnas.72.10.3888.Peer-Reviewed Original Research
1974
The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals
Steitz T, Richmond T, Wise D, Engelman D. The lac Repressor Protein: Molecular Shape, Subunit Structure, and Proposed Model for Operator Interaction Based on Structural Studies of Microcrystals. Proceedings Of The National Academy Of Sciences Of The United States Of America 1974, 71: 593-597. PMID: 4595565, PMCID: PMC388057, DOI: 10.1073/pnas.71.3.593.Peer-Reviewed Original Research
1971
Structural comparisons of native and reaggregated membranes.
Engelman D, Metcalfe J, Metcalfe S. Structural comparisons of native and reaggregated membranes. British Journal Of Pharmacology 1971, 41: 382p. PMID: 5572285, PMCID: PMC1703325.Peer-Reviewed Original Research