2000
Interhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResidues
1997
Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †
Hunt J, Rath P, Rothschild K, Engelman D. Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †. Biochemistry 1997, 36: 15177-15192. PMID: 9398245, DOI: 10.1021/bi970147b.Peer-Reviewed Original ResearchConceptsLipid bilayersIntegral membrane protein bacteriorhodopsinMembrane-spanning regionIntegral membrane proteinsPH-dependent membrane insertionAspartic acid residuesMembrane protein bacteriorhodopsinInsertion reactionMembrane insertionMembrane proteinsAqueous solutionHydrophobic sequenceAqueous bufferPoor solubilityAlpha-helixAcid residuesSignificant solubilityC-helixSpectroscopic assaysΑ-helixSecondary structureProtein bacteriorhodopsinNeutral pHPeptide associatesBilayersThe effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody
Fleming K, Ackerman A, Engelman D. The effect of point mutations on the free energy of transmembrane α-helix dimerization11Edited by M. F. Moody. Journal Of Molecular Biology 1997, 272: 266-275. PMID: 9299353, DOI: 10.1006/jmbi.1997.1236.Peer-Reviewed Original ResearchConceptsSodium dodecylsulfateVan der Waals interactionsAnalytical ultracentrifugationDer Waals interactionsFree energyMolecular association eventsEnergy of dimerizationOctyl etherWaals interactionsMolecular modelingRelative energy scaleDetergent environmentReversible associationEnergy differenceSedimentation equilibriumMonomersTransmembrane α-helicesNon-denaturing detergent solutionsDimer formationΑ-helixDimer stateAssociation eventsDetergent solutionDissociationHelixStructure of the Transmembrane Cysteine Residues in Phospholamban
Arkin I, Adams P, Brünger A, Aimoto S, Engelman D, Smith S. Structure of the Transmembrane Cysteine Residues in Phospholamban. The Journal Of Membrane Biology 1997, 155: 199-206. PMID: 9050443, DOI: 10.1007/s002329900172.Peer-Reviewed Original ResearchConceptsTransmembrane domainCysteine residuesSide chainsPentameric complexCysteine side chainsTransmembrane cysteine residuesLong α-helixIntrahelical hydrogen bondsBackbone carbonyl oxygenSelective ion channelsPolar side chainsElectrostatic potential fieldCarbonyl oxygenSulfhydryl groupsHydrogen bondsMembrane proteinsWild-type phospholambanVibrational spectraMutagenesis studiesTransmembrane peptidesAlanine substitutionsMolecular dynamicsReticulum membraneElectrostatic calculationsΑ-helix
1995
Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban
Adams P, Arkin I, Engelman D, Brünger A. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nature Structural & Molecular Biology 1995, 2: 154-162. PMID: 7749920, DOI: 10.1038/nsb0295-154.Peer-Reviewed Original ResearchConceptsPentameric ion channelsTransmembrane domainThree-dimensional structureMembrane proteinsHydrophobic residuesΑ-helixIon channelsComputational searchingEnvironmental constraintsTwo-bodyGlobal searchPhospholambanMutagenesisComputational methodsHomopentamerProteinExperimental dataResiduesData yields
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssemblyA dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction
1992
Helix-helix interactions inside lipid bilayers
Lemmon M, Engelman D. Helix-helix interactions inside lipid bilayers. Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.Peer-Reviewed Original ResearchTransmembrane α-helicesHelix-helix interactionsΑ-helixSingle transmembrane α-helixMechanism of transmembraneIntegral membrane proteinsNumber of proteinsMembrane-bound receptorsTransmembrane helicesInterhelical salt bridgesMembrane proteinsSoluble proteinSuch oligomerizationEndoplasmic reticulumHydrophobic anchorSuch helicesProteinLipid bilayersSalt bridgePacking interactionsOligomerizationSpecific interactionsCrystallographic studiesHelixGolgi
1988
Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding
Popot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding. Jerusalem Symposia 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.Peer-Reviewed Original ResearchIntegral membrane proteinsMembrane proteinsHelical integral membrane proteinsIntegral membrane protein foldingIntegral membrane protein bacteriorhodopsinMembrane protein foldingTransmembrane α-helicesMembrane protein bacteriorhodopsinTransmembrane helicesProtein foldingRenaturation experimentsVesicle fusionExtensive rearrangementNative proteinPolypeptide chainΑ-helixSequence segmentsLipid vesiclesProtein bacteriorhodopsinProteolytic fragmentsProteinFoldingHelixLipid phaseBacteriorhodopsin
1987
Folding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage Mechanism
Popot J, Engelman D. Folding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage Mechanism. 1987, 345-346. DOI: 10.1007/978-1-4613-1941-2_48.Peer-Reviewed Original Research