2022
Toward Precision Phenotyping of Multiple Sclerosis
Pitt D, Lo CH, Gauthier SA, Hickman RA, Longbrake E, Airas LM, Mao-Draayer Y, Riley C, De Jager PL, Wesley S, Boster A, Topalli I, Bagnato F, Mansoor M, Stuve O, Kister I, Pelletier D, Stathopoulos P, Dutta R, Lincoln MR. Toward Precision Phenotyping of Multiple Sclerosis. Neurology Neuroimmunology & Neuroinflammation 2022, 9: e200025. PMID: 36041861, PMCID: PMC9427000, DOI: 10.1212/nxi.0000000000200025.Peer-Reviewed Original ResearchConceptsMultiple sclerosisSecondary progressive multiple sclerosisPathological processesProgressive multiple sclerosisKey pathological processClinical trial designDevelopment of biomarkersPerilesional inflammationNeuroaxonal degenerationMS phenotypeTrial designClinical importancePersonalized careM phenotypeSclerosisPhenotypeRemyelinationInflammationSyndromePrognosticationDegenerationProgressionBiomarkersCareClinical trials in multiple sclerosis: past, present, and future
Manouchehri N, Shirani A, Salinas VH, Tardo L, Hussain RZ, Pitt D, Stuve O. Clinical trials in multiple sclerosis: past, present, and future. Neurologia I Neurochirurgia Polska 2022, 56: 228-235. PMID: 35712986, DOI: 10.5603/pjnns.a2022.0041.Peer-Reviewed Original ResearchConceptsDisease-modifying therapiesMultiple sclerosisClinical trialsManagement of MSEffective disease-modifying therapiesDisability Assessment ScaleDisease-specific interventionsDisease diagnostic criteriaBurden of diseaseClinical trial developmentDisease-specific biomarkersMS pathophysiologyDiagnostic criteriaClinical practiceTrial developmentAssessment ScaleSclerosisTrialsPatientsNeuroimmunologyPathophysiologyTherapyDiseaseDiagnosisContinued progress
2021
In vivo evidence of differential frontal cortex metabolic abnormalities in progressive and relapsing‐remitting multiple sclerosis
Swanberg KM, Prinsen H, DeStefano K, Bailey M, Kurada AV, Pitt D, Fulbright RK, Juchem C. In vivo evidence of differential frontal cortex metabolic abnormalities in progressive and relapsing‐remitting multiple sclerosis. NMR In Biomedicine 2021, 34: e4590. PMID: 34318959, DOI: 10.1002/nbm.4590.Peer-Reviewed Original ResearchConceptsProgressive multiple sclerosisRelapsing-remitting multiple sclerosisMultiple sclerosis patientsMultiple sclerosisDisease durationSclerosis patientsRelapsing-remitting multiple sclerosis patientsSignificant negative correlationAvailable disease-modifying therapiesFrontal cortex metabolismH-MRS protocolDisease-modifying therapiesHealthy control adultsN-acetyl aspartateCross-sectional analysisCortex metabolismMetabolic abnormalitiesΓ-aminobutyric acidMetabolites glutamateFrontal cortexSclerosisNegative correlationControl adultsGABAProton MRS
2019
Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker
Swanberg KM, Landheer K, Pitt D, Juchem C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation From Proton Signal to Diagnostic Biomarker. Frontiers In Neurology 2019, 10: 1173. PMID: 31803127, PMCID: PMC6876616, DOI: 10.3389/fneur.2019.01173.Peer-Reviewed Original ResearchMultiple sclerosisProton magnetic resonance spectroscopyDiagnostic biomarkersH-MRSStudy designVivo proton magnetic resonance spectroscopyCentral nervous system tissueNormal-appearing white matterNumerous metabolic alterationsPotential diagnostic biomarkersNervous system tissueMetabolic abnormalitiesH-MRS dataSpinal cordLesion compositionSclerosisMetabolic alterationsWhite matterGray matterMagnetic resonance spectroscopyMetabolic signaturesBiomarkersExperimental cohortLines of evidenceTechnical considerations
2018
The Role of Astrocytes in Multiple Sclerosis
Ponath G, Park C, Pitt D. The Role of Astrocytes in Multiple Sclerosis. Frontiers In Immunology 2018, 9: 217. PMID: 29515568, PMCID: PMC5826071, DOI: 10.3389/fimmu.2018.00217.Peer-Reviewed Original ResearchConceptsRole of astrocytesImmune cell accessCentral nervous systemMultiple sclerosis lesionsAstrocyte activationMultiple sclerosisGlial scarAstrocyte functionMS treatmentMS lesionsNervous systemAstrocytesSclerosis lesionsLesion formationFunctional polarizationLesionsCell accessSclerosisInflammationPathogenesis
2016
Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping
Stüber C, Pitt D, Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. International Journal Of Molecular Sciences 2016, 17: 100. PMID: 26784172, PMCID: PMC4730342, DOI: 10.3390/ijms17010100.Peer-Reviewed Original ResearchConceptsMultiple sclerosisMagnetic resonance imagingBrain tissueQuantitative susceptibility mappingMS brain tissueAdvanced MRI methodsMS patientsChronic inflammationImmunohistochemical investigationBrain ironMyeloid cellsResonance imagingNon-invasive studyHistological studyRole of ironOxidative stressNoninvasive imagingSclerosisInflammationCellular distributionMRI methodsNeurodegenerationTissueImagingPatients
2015
Biomarkers in multiple sclerosis
Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clinical Immunology 2015, 161: 51-58. PMID: 26143623, DOI: 10.1016/j.clim.2015.06.015.Peer-Reviewed Original ResearchConceptsMultiple sclerosisB cell chemoattractant CXCL13Myelin-reactive T cellsMacrophage marker CD163Reactive T cellsMarkers of neurodegenerationKIR4.1 antibodiesMS seraClinical outcomesOligoclonal bandsYKL-40Disease progressionT cellsMS susceptibilityCerebrospinal fluidPotential biomarkersViral titersClinical useBiomarkersBiomarker researchSclerosisProgressionDisease diagnosisCD163CXCL13Excess Lipid Accumulation in Cortical Neurons in Multiple Sclerosis May Lead to Autophagic Dysfunction and Neurodegeneration (P5.237)
Kim I, DeBartolo D, Ramanan S, Ponath G, Pitt D. Excess Lipid Accumulation in Cortical Neurons in Multiple Sclerosis May Lead to Autophagic Dysfunction and Neurodegeneration (P5.237). Neurology 2015, 84 DOI: 10.1212/wnl.84.14_supplement.p5.237.Peer-Reviewed Original ResearchImmune Infiltrates Expressing Podoplanin (PDPN) are Present in Multiple Sclerosis but not Glioblastoma (S12.002)
Nylander A, Ramanan S, Debartolo D, Park C, Hafler D, Pitt D. Immune Infiltrates Expressing Podoplanin (PDPN) are Present in Multiple Sclerosis but not Glioblastoma (S12.002). Neurology 2015, 84 DOI: 10.1212/wnl.84.14_supplement.s12.002.Peer-Reviewed Original Research
2014
IFN-β alters neurotrophic factor expression in T cells isolated from multiple sclerosis patients - implication of novel neurotensin/NTSR1 pathway in neuroprotection.
Soltys J, Knight J, Scharf E, Pitt D, Mao-Draayer Y. IFN-β alters neurotrophic factor expression in T cells isolated from multiple sclerosis patients - implication of novel neurotensin/NTSR1 pathway in neuroprotection. American Journal Of Translational Research 2014, 6: 312-9. PMID: 24936223, PMCID: PMC4058312.Peer-Reviewed Original ResearchT cellsMultiple sclerosisNeurotrophin receptorActive demyelinating lesionsNeurotrophic factor expressionCytokine expression patternsHigh-affinity receptor 1Mechanism of actionDemyelinating lesionsMS pathogenesisRRMS patientsNeurotrophin productionNeuroprotective effectsNeurotrophin expressionNeuroprotective capabilitiesStem/progenitor cell survivalProgenitor cell survivalDisease pathogenesisReceptor 1Factor expressionIFNPotent inducerSpecific cell populationsCell populationsSclerosis
2013
Combination Interferon-beta 1a and Mycophenolate Mofetil in Relapsing Remitting Multiple Sclerosis: Effects on Safety, Relapse Rate and Disability (P07.123)
Nicholas J, Savel M, Schaffer C, Bartoszek M, O'Connell C, Rammohan K, Kirsch C, Pitt D, Racke M, Boster A. Combination Interferon-beta 1a and Mycophenolate Mofetil in Relapsing Remitting Multiple Sclerosis: Effects on Safety, Relapse Rate and Disability (P07.123). Neurology 2013, 80 DOI: 10.1212/wnl.80.7_supplement.p07.123.Peer-Reviewed Original Research
2012
Detecting cortical lesions in multiple sclerosis at 7 T using white matter signal attenuation
Bluestein KT, Pitt D, Sammet S, Zachariah CR, Nagaraj U, Knopp MV, Schmalbrock P. Detecting cortical lesions in multiple sclerosis at 7 T using white matter signal attenuation. Magnetic Resonance Imaging 2012, 30: 907-915. PMID: 22578928, PMCID: PMC3402634, DOI: 10.1016/j.mri.2012.03.006.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAlgorithmsCerebral CortexFemaleHumansImage EnhancementImage Interpretation, Computer-AssistedMagnetic Resonance ImagingMaleMiddle AgedMultiple SclerosisNerve Fibers, MyelinatedReproducibility of ResultsSensitivity and SpecificitySubtraction TechniqueYoung AdultNew and Emerging Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis: What is New and What is to Come
Nicholas J, Morgan-Followell B, Pitt D, Racke MK, Boster A. New and Emerging Disease-Modifying Therapies for Relapsing-Remitting Multiple Sclerosis: What is New and What is to Come. Journal Of Central Nervous System Disease 2012, 4: jcnsd.s6692. PMID: 23650470, PMCID: PMC3619700, DOI: 10.4137/jcnsd.s6692.Peer-Reviewed Original ResearchMultiple sclerosisRelapsing-remitting multiple sclerosisKey clinical trialsDisease-Modifying TherapiesMonoclonal antibody therapyIFN β-1aIFN-β-1bMS includingAvailable efficacyOral agentsGlatiramer acetateTreatment algorithmAntibody therapyClinical trialsPromising therapySafety dataNew therapiesTherapyNew FDATherapeutic landscapeActive investigationNatalizumabFingolimodSclerosisFDA
2011
Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing–remitting multiple sclerosis
Boster A, Bartoszek MP, O’Connell C, Pitt D, Racke M. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing–remitting multiple sclerosis. Therapeutic Advances In Neurological Disorders 2011, 4: 319-332. PMID: 22010043, PMCID: PMC3187678, DOI: 10.1177/1756285611422108.Peer-Reviewed Original ResearchT1 and proton density at 7 T in patients with multiple sclerosis: an initial study
Bluestein KT, Pitt D, Knopp MV, Schmalbrock P. T1 and proton density at 7 T in patients with multiple sclerosis: an initial study. Magnetic Resonance Imaging 2011, 30: 19-25. PMID: 21937183, PMCID: PMC3375320, DOI: 10.1016/j.mri.2011.07.018.Peer-Reviewed Original ResearchConceptsCortical lesionsMultiple sclerosisWhite matterGray matterHealthy control subjectsWhite matter lesionsNormal-appearing tissueMS patientsMagnetic resonance sequencesMatter lesionsControl subjectsCerebrospinal fluidMS researchLesionsPatientsMR imagingUltrahigh-field MR imagingField MR imagingSclerosisProton densityResonance sequencesTissue responseTurbo fieldMagnetic resonanceInitial study
2010
Imaging Cortical Lesions in Multiple Sclerosis With Ultra–High-Field Magnetic Resonance Imaging
Pitt D, Boster A, Pei W, Wohleb E, Jasne A, Zachariah CR, Rammohan K, Knopp MV, Schmalbrock P. Imaging Cortical Lesions in Multiple Sclerosis With Ultra–High-Field Magnetic Resonance Imaging. JAMA Neurology 2010, 67: 812-818. PMID: 20625086, DOI: 10.1001/archneurol.2010.148.Peer-Reviewed Original ResearchConceptsCortical lesion detectionCortical lesionsMultiple sclerosisLesion typeCortical multiple sclerosis lesionsBrain tissueCortical lesion typesMultiple sclerosis tissueAutopsied brain tissueInversion recoveryMagnetic resonance imagingMultiple sclerosis lesionsCorresponding histological sectionsLesion detectionMyelin basic proteinHypointense ringUndetected lesionsImmunohistochemical analysisSclerosis lesionsLesionsResonance imagingSensitivity of T2SclerosisMagnetic resonance imagesLesion visibility
2004
Glutamate Excitotoxicity in Multiple Sclerosis
Pitt D, Raine C. Glutamate Excitotoxicity in Multiple Sclerosis. 2004, 285-303. DOI: 10.1007/978-1-4419-8959-8_16.Peer-Reviewed Original ResearchGlutamate excitotoxicityMultiple sclerosisWhite matter injuryCentral white matterProminent demyelinationMS pathogenesisOligodendrocyte damageInflammatory demyelinationOligodendrocyte lossExtracellular glutamateGlutamate homeostasisAnimal modelsExcitotoxicityWhite matterCell targetsClearance pathwaysCommon pathwayDisease mechanismsCell culture studiesDemyelinationSclerosisRecent dataOligodendrocytesCulture studiesPathogenesis
1999
PERFORIN EXPRESSION IN DEMYELINATIVE LESIONS OF MULTIPLE SCLEROSIS, AND A ROLE FOR PERFORIN IN THE REGULATION OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS
Zeine R, Cannella B, Pitt D, Raine C. PERFORIN EXPRESSION IN DEMYELINATIVE LESIONS OF MULTIPLE SCLEROSIS, AND A ROLE FOR PERFORIN IN THE REGULATION OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS. Journal Of Neuropathology & Experimental Neurology 1999, 58: 564. DOI: 10.1097/00005072-199905000-00232.Peer-Reviewed Original Research