2021
Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity
Perszyk EE, Hutelin Z, Trinh J, Kanyamibwa A, Fromm S, Davis XS, Wall KM, Flack KD, DiFeliceantonio AG, Small DM. Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity. Nutrients 2021, 13: 1203. PMID: 33917347, PMCID: PMC8067354, DOI: 10.3390/nu13041203.Peer-Reviewed Original Research
2020
Identification of a brain fingerprint for overweight and obesity
Farruggia MC, van Kooten MJ, Perszyk EE, Burke MV, Scheinost D, Constable RT, Small DM. Identification of a brain fingerprint for overweight and obesity. Physiology & Behavior 2020, 222: 112940. PMID: 32417645, PMCID: PMC7321926, DOI: 10.1016/j.physbeh.2020.112940.Peer-Reviewed Original ResearchMeSH KeywordsAdiposityAdultBody Mass IndexBrainHumansObesityOverweightRisk FactorsWaist CircumferenceConceptsPercent body fatWaist circumferenceBody fatWhole-brain functional connectivityBrain network patternsGlucose toleranceBlood insulinObesityOverweightPathophysiological phenotypesFunctional connectivity networksFunctional connectivityMilkshake consumptionBrain correlatesBrain fingerprintsBMIAdiposityBrainCircumferenceConnectivity networksFatDiabetesPathophysiologyCentral roleInsulin
2016
Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal
Sun X, Veldhuizen MG, Babbs AE, Sinha R, Small DM. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chemical Senses 2016, 41: 233-248. PMID: 26826114, PMCID: PMC4850930, DOI: 10.1093/chemse/bjv081.Peer-Reviewed Original ResearchConceptsBody mass indexMass indexHealthy weight subjectsBrain responsesFunctional magnetic resonance imagingMagnetic resonance imagingGhrelin suppressionWeight subjectsMetabolic healthFree fatty acidsMetabolic measuresAnimal studiesBody weightResonance imagingOlfactory-guided behaviorDifferential brain responsesEndocrine influencesChemosensory stimuliMetabolic peptidesMetabolic responseOlfactory sensitivityHuman researchInconsistent resultsMealFatty acids
2015
Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior
Kroemer NB, Sun X, Veldhuizen MG, Babbs AE, de Araujo IE, Small DM. Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior. NeuroImage 2015, 128: 273-283. PMID: 26724781, DOI: 10.1016/j.neuroimage.2015.12.031.Peer-Reviewed Original ResearchConceptsBrain responsesHigher body mass indexAd libitum food consumptionBody mass indexGreater weight lossNucleus Accumbens ResponseFunctional magnetic resonanceMilkshake receiptMass indexPlasma insulinPlasma glucoseMetabolic parametersDietary disinhibitionStriatal activityVariable response patternsWeight lossFood stimuliMetabolic responseSensory stimuliFood consumptionIntra-individual variationVariable responseMilkshakeMagnetic resonanceResponse patternsGreater perceived ability to form vivid mental images in individuals with high compared to low BMI
Patel BP, Aschenbrenner K, Shamah D, Small DM. Greater perceived ability to form vivid mental images in individuals with high compared to low BMI. Appetite 2015, 91: 185-189. PMID: 25865661, DOI: 10.1016/j.appet.2015.04.005.Peer-Reviewed Original ResearchConceptsImagery abilityMental imagery abilityFrequent food cravingsFood cue reactivityVivid mental imagesHierarchical regression analysisMental imageryOlfactory imageryCue reactivityVisual objectsMental imagesFood cravingsPositive associationSecond experimentSignificant positive associationBest predictorParticipantsIndividualsAbilityImageryCravingObese individualsMeasuresRegression analysisCorrelation analysisOpposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum
Cosgrove KP, Veldhuizen MG, Sandiego CM, Morris ED, Small DM. Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse 2015, 69: 195-202. PMID: 25664726, PMCID: PMC4411955, DOI: 10.1002/syn.21809.Peer-Reviewed Original ResearchConceptsBody mass indexPalatable food consumptionDorsal striatumMass indexBOLD responseReceptor availabilityRelationship of BMIFood consumptionPET studiesMagnetic resonance imaging studyPositron emission tomography studyBlood oxygen level-dependent (BOLD) responseDopamine D2/3 receptorsHigh-fat dietDopamine receptor levelsEmission tomography studiesFMRI studyResonance imaging studyFunctional magnetic resonance imaging studyLevel-dependent responsesReliable inverse relationshipHealthy weightD2/3 receptorsStriatal circuitryFat diet
2014
Working memory and reward association learning impairments in obesity
Coppin G, Nolan-Poupart S, Jones-Gotman M, Small DM. Working memory and reward association learning impairments in obesity. Neuropsychologia 2014, 65: 146-155. PMID: 25447070, PMCID: PMC4259845, DOI: 10.1016/j.neuropsychologia.2014.10.004.Peer-Reviewed Original ResearchMeSH KeywordsAdultAssociation LearningBody Mass IndexCognition DisordersFemaleHumansMaleMemory, Short-TermObesityOverweightRewardYoung AdultConceptsHealthy weight individualsNegative outcomesExplicit learningReward association learningProbabilistic learning taskFunction of groupHealthy weight groupObese individualsReward associationsStimulus-rewardExecutive functionAssociation learningLearning taskExperiment 1Learning impairmentHealthy weightParadoxical preferenceWeight individualsPositive outcomesMemoryWeight groupInfluence of obesitySecond experimentCurrent studyDeficits
2013
Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity
Babbs RK, Sun X, Felsted J, Chouinard-Decorte F, Veldhuizen MG, Small DM. Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology & Behavior 2013, 121: 103-111. PMID: 23562867, PMCID: PMC3731396, DOI: 10.1016/j.physbeh.2013.03.025.Peer-Reviewed Original ResearchConceptsBody mass indexCaudate responseMass indexCaudate nucleusBrain responsesHigher body mass indexWeight gainHealthy weight subjectsTasteless control solutionEnergy-dense foodsSelf-reported impulsivityWeight subjectsNegative associationVentral putamenDorsal striatumFood rewardDense foodsSignificant associationInverse correlationMilkshakeOverweightGreater impulsivityMeasures of impulsivityGreater responseAssociation
2012
Altered hypothalamic response to food in smokers 1 , 2 , 3
Geha PY, Aschenbrenner K, Felsted J, O'Malley SS, Small DM. Altered hypothalamic response to food in smokers 1 , 2 , 3. American Journal Of Clinical Nutrition 2012, 97: 15-22. PMID: 23235196, PMCID: PMC3522134, DOI: 10.3945/ajcn.112.043307.Peer-Reviewed Original ResearchConceptsWeight changeBrain responsesFunctional MRILong-term weight changeAltered brain responsesTasteless control solutionMilk shakeEnergy-dense foodsGroup of ageSmoking statusSmoking cessationSmoking influencesHypothalamic responseNonsmokersSmokersVentral striatumWeight gainBMIHypothalamusGreater responseResponseFoodStudy 1ThalamusGroupMidbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger
Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 2012, 60: 168-174. PMID: 23064394, PMCID: PMC3526000, DOI: 10.1016/j.appet.2012.09.032.Peer-Reviewed Original ResearchConceptsAbsence of hungerFunctional magnetic resonance imagingSubsequent intakeRatings of hungerPeriaqueductal gray regionMidbrain responsesMagnetic resonance imagingKey reward regionsPalatable milkshakeSignificant positive associationPalatable foodResonance imagingInsular responsesOrbitofrontal cortexNeural circuitsGreater intakeMilkshake consumptionIntakeReward regionsBrain responsesEnhanced responseMilkshakePositive associationMidbrainGray regionAcute stress potentiates brain response to milkshake as a function of body weight and chronic stress
Rudenga KJ, Sinha R, Small DM. Acute stress potentiates brain response to milkshake as a function of body weight and chronic stress. International Journal Of Obesity 2012, 37: 309-316. PMID: 22430303, PMCID: PMC3381866, DOI: 10.1038/ijo.2012.39.Peer-Reviewed Original ResearchConceptsBody mass indexFunctional magnetic resonance imagingChronic stressOrbitofrontal cortexRight amygdalaBody weightPalatable foodAcute stressBasal cortisol levelsBrain responsesAmygdala responseMagnetic resonance imagingStress-related eatingMilkshake receiptPalatable milkshakeObese womenOverweight womenMass indexRight amygdala responseOFC responsesPotentiates responsesCortisol levelsLeft amygdalaResonance imagingVentral striatum
2010
Genetically Determined Differences in Brain Response to a Primary Food Reward
Felsted JA, Ren X, Chouinard-Decorte F, Small DM. Genetically Determined Differences in Brain Response to a Primary Food Reward. Journal Of Neuroscience 2010, 30: 2428-2432. PMID: 20164326, PMCID: PMC2831082, DOI: 10.1523/jneurosci.5483-09.2010.Peer-Reviewed Original ResearchConceptsBrain responsesPrimary food rewardFunctional magnetic resonanceTaqIA A1 alleleOrbital frontal cortexReward driveIndividual differencesNeural responsesFuture weight gainFood rewardPalatable foodNeuroimaging techniquesPerceptual responsesBiological underpinningsIndividual factorsFrontal cortexImpulsivityDiminished dopamineSimilar ratingsFood reinforcementRewardSpecific associationNeurophysiologyMilkshakeBody mass index
2008
Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study
Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of Reward From Food Intake and Anticipated Food Intake to Obesity: A Functional Magnetic Resonance Imaging Study. Journal Of Psychopathology And Clinical Science 2008, 117: 924-935. PMID: 19025237, PMCID: PMC2681092, DOI: 10.1037/a0013600.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingAdolescent girlsGreater activationFunctional magnetic resonance imaging studySomatosensory regionsRelation of rewardGustatory cortexDopamine receptor availabilityMagnetic resonance imaging studyResonance imaging studyChocolate milkshakeTasteless solutionConsequent weight gainFood intakeBrain regionsGreater rewardsHedonic aspectsDecreased activationWeak activationRewardReceptor availabilityMilkshakeGirlsImaging studiesMagnetic resonance imagingRelation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele
Stice E, Spoor S, Bohon C, Small DM. Relation Between Obesity and Blunted Striatal Response to Food Is Moderated by TaqIA A1 Allele. Science 2008, 322: 449-452. PMID: 18927395, PMCID: PMC2681095, DOI: 10.1126/science.1161550.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAllelesBasal GangliaBody Mass IndexCaudate NucleusCorpus StriatumCuesDeoxyribonucleases, Type II Site-SpecificDopamineEatingFemaleFoodHumansHyperphagiaMagnetic Resonance ImagingObesityPolymorphism, Restriction Fragment LengthPutamenReceptors, Dopamine D2Regression AnalysisRewardSignal TransductionWeight GainConceptsDorsal striatumTaqIA restriction fragment length polymorphismConsummatory food rewardMagnetic resonance imaging studyStriatal dopamine receptorsDevelopment of obesityA1 alleleResonance imaging studyFunctional magnetic resonance imaging studyDopamine D2 receptor geneTaqIA A1 alleleObese individualsStriatal dopamineD2 receptor geneProspective dataLean individualsDopamine receptorsFood intakeStriatumImaging studiesStriatal responsesStriatal activationGenetic polymorphismsReceptor geneObesity