2017
Response of Npt2a knockout mice to dietary calcium and phosphorus
Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLOS ONE 2017, 12: e0176232. PMID: 28448530, PMCID: PMC5407772, DOI: 10.1371/journal.pone.0176232.Peer-Reviewed Original ResearchConceptsCompared to WT miceWT miceDietary calciumDietary phosphateCalcium x phosphorus productUrine phosphate levelsUrinary calcium excretionUrine anion gapDevelopment of novel therapiesWild-typeRenal stone diseaseWild-type miceNpt2a-knockout (KO) miceCalcium excretionFGF23 levelsNovel therapiesPreventing nephrolithiasisPlasma phosphateStone diseaseAnion gapAddition of calciumKnockout micePhosphorus productCalcium phosphate depositionHuman carriers
2012
Dietary phosphate modifies lifespan in Drosophila
Bergwitz C. Dietary phosphate modifies lifespan in Drosophila. Nephrology Dialysis Transplantation 2012, 27: 3399-3406. PMID: 22942172, DOI: 10.1093/ndt/gfs362.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImportant cellular processesNutrient-sensing pathwaysDrosophila melanogasterCellular processesLifespan extensionLarval developmentPhosphonoformic acidHuman disordersNormal fliesCellular uptakeSpecific pathwaysEffects of dietary phosphateDrosophilaReduced lifespanModel systemReduced cellular uptakeAdult lifespanLittle phosphateAbsorption of phosphatePathwayLifespanDietary phosphateTherapeutic approachesMelanogasterPowerful tool