2019
An information network flow approach for measuring functional connectivity and predicting behavior
Kumar S, Yoo K, Rosenberg MD, Scheinost D, Constable RT, Zhang S, Li C, Chun MM. An information network flow approach for measuring functional connectivity and predicting behavior. Brain And Behavior 2019, 9: e01346. PMID: 31286688, PMCID: PMC6710195, DOI: 10.1002/brb3.1346.Peer-Reviewed Original ResearchConceptsFunctional brain connectivityFunctional magnetic resonance imagingFMRI time coursesIndividual differencesTask performanceMeasures of attentionSustained attention taskAttention task performanceResting-state fMRI dataSample of individualsAttention taskFMRI dataFunctional connectivityFC patternsBrain connectivityPearson correlationInformation theory statisticsInformation flowMachine-learning modelsMeasuresMagnetic resonance imagingAttentionNetwork flow approachTime courseDifferent datasets
2018
Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies
Fong AHC, Yoo K, Rosenberg MD, Zhang S, Li CR, Scheinost D, Constable RT, Chun MM. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage 2018, 188: 14-25. PMID: 30521950, PMCID: PMC6401236, DOI: 10.1016/j.neuroimage.2018.11.057.Peer-Reviewed Original ResearchConceptsAttention task performanceDynamic functional connectivityTask performanceIndividual differencesExecutive control brain networksFunctional connectivityFunctional brain scansAttention performanceTask conditionsAttention scoresBrain networksFMRI dataBrain regionsBetter attentionFC featuresFC matricesDFC matrixPearson's rAttentionIndividualsOne-subjectBrain scansConnectivityConnectomeCross-validation approach