2007
IGF‐1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination
Liang G, Cline GW, Macica CM. IGF‐1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia 2007, 55: 632-641. PMID: 17299765, DOI: 10.1002/glia.20496.Peer-Reviewed Original ResearchMeSH KeywordsAcetatesAnimalsCell CommunicationCells, CulturedCoculture TechniquesFatty AcidsGanglia, SpinalInsulin-Like Growth Factor IMembrane LipidsMyelin SheathNeurons, AfferentPeripheral Nervous SystemPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktRatsRats, Sprague-DawleySchwann CellsSignal TransductionConceptsInsulin-like growth factor-1Fatty acid synthesizing enzymesSynthesizing enzymesIGF-1 treatmentMyelin membrane formationGrowth factor-1PI3K/Akt pathwaySchwann cell differentiationPI3K/AktWestern blot analysisSciatic nerveIGF-1Schwann cellsElectrospray mass spectroscopy analysisCell coculturesMyelin-specific proteinsGrowth factorAkt pathwayMyelinationFactor 1Fatty acid synthesisCocultureBlot analysisEarly eventsMyelin membrane
2006
Induction of parathyroid hormone‐related peptide following peripheral nerve injury: Role as a modulator of Schwann cell phenotype
Macica CM, Liang G, Lankford KL, Broadus AE. Induction of parathyroid hormone‐related peptide following peripheral nerve injury: Role as a modulator of Schwann cell phenotype. Glia 2006, 53: 637-648. PMID: 16470617, DOI: 10.1002/glia.20319.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell DifferentiationCell ProliferationCells, CulturedCyclic AMP Response Element-Binding ProteinDisease Models, AnimalGanglia, SpinalGrowth ConesLigationMiceNerve RegenerationNeurons, AfferentParathyroid Hormone-Related ProteinPeripheral Nerve InjuriesPeripheral NervesRatsRats, Sprague-DawleyReceptor, Parathyroid Hormone, Type 1RNA, MessengerSchwann CellsSciatic NerveSciatic NeuropathyUp-RegulationConceptsSciatic nerve injury modelNerve injury modelPeripheral nerve injuryRole of PTHrPHormone-related peptideSchwann cellsSciatic nerveNerve injuryInjury modelNerve regenerationNervous systemParathyroid hormone-related peptideInjured sciatic nerveDedifferentiated Schwann cellsSchwann cell phenotypeRat nervous systemPeripheral nervous systemPTHrP receptor mRNASuccessful nerve regenerationType 1 collagen matrixSchwann cell culturesSympathetic gangliaPTHrP functionsPTHrP mRNAReceptor mRNA
2005
Stretch‐Induced PTH‐Related Protein Gene Expression in Osteoblasts*
Chen X, Macica CM, Ng KW, Broadus AE. Stretch‐Induced PTH‐Related Protein Gene Expression in Osteoblasts*. Journal Of Bone And Mineral Research 2005, 20: 1454-1461. PMID: 16007342, DOI: 10.1359/jbmr.2005.20.8.1454.Peer-Reviewed Original ResearchConceptsAnabolic effectsStretch-activated potassium channelsCandidate mediatorsCyclical stretchPotassium channelsL-type calcium channelsN-terminal PTHPTHrP mRNA expressionStretch-activated cation channelsSmooth muscle cellsOsteoblast-like cellsUMR 201PTHrP gene expressionHypotonic solutionEndogenous mediatorsPTHrP mRNAIntracellular acidosisExtracellular calciumCalcium channelsFlexercell apparatusPTHrPRNase protection assaysMRNA expressionMuscle cellsSkeletal mass
2001
Casein Kinase 2 Determines the Voltage Dependence of the Kv3.1 Channel in Auditory Neurons and Transfected Cells
Macica C, Kaczmarek L. Casein Kinase 2 Determines the Voltage Dependence of the Kv3.1 Channel in Auditory Neurons and Transfected Cells. Journal Of Neuroscience 2001, 21: 1160-1168. PMID: 11160386, PMCID: PMC6762230, DOI: 10.1523/jneurosci.21-04-01160.2001.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseAnimalsAuditory PathwaysBinding SitesBrain StemCasein Kinase IICDC2-CDC28 KinasesCHO CellsCricetinaeCyclin-Dependent Kinase 2Cyclin-Dependent KinasesElectric StimulationEnzyme InhibitorsIn Vitro TechniquesMembrane PotentialsNeuronsNeuropeptidesPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Voltage-GatedPrecipitin TestsProtein Kinase CProtein Serine-Threonine KinasesRatsShaw Potassium ChannelsTetradecanoylphorbol AcetateTransfectionConceptsCasein kinase 2Kinase 2Casein kinase IIProtein kinase CKv3.1 channelsChinese hamster ovary cellsHamster ovary cellsConstitutive phosphorylationPhosphatase treatmentKinase IIKinase CTransfected CellsVoltage-dependent activationOvary cellsWhole-cell conductancePhosphorylationPotassium channelsRectifier channelsBiophysical characteristicsInactivationKv3.1 potassium channelVoltage dependenceActivationKv3.1Patch-clamp recordings
1998
Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition
Macica C, Yang Y, Lerea K, Hebert S, Wang W. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition. American Journal Of Physiology 1998, 274: f175-f181. PMID: 9458837, DOI: 10.1152/ajprenal.1998.274.1.f175.Peer-Reviewed Original ResearchAlanineAmino Acid SequenceAmino Acid SubstitutionAnimalsArachidonic AcidCell LineCloning, MolecularFemaleIon Channel GatingMembrane PotentialsMolecular Sequence DataMutagenesis, Site-DirectedOocytesPotassium ChannelsPotassium Channels, Inwardly RectifyingProtein Kinase CRatsRecombinant ProteinsSequence AlignmentSerineTransfectionXenopus laevis
1996
Arachidonic acid inhibits activity of cloned renal K+ channel, ROMK1
Macica CM, Yang Y, Hebert SC, Wang WH. Arachidonic acid inhibits activity of cloned renal K+ channel, ROMK1. American Journal Of Physiology 1996, 271: f588-f594. PMID: 8853420, DOI: 10.1152/ajprenal.1996.271.3.f588.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArachidonic AcidCaffeic AcidsCloning, MolecularCyclooxygenase InhibitorsCytochrome P-450 Enzyme InhibitorsFatty AcidsFatty Acids, UnsaturatedFemaleIndomethacinKidney MedullaKineticsLipoxygenase InhibitorsOocytesPatch-Clamp TechniquesPotassium Channel BlockersPotassium ChannelsRatsXenopus laevis
1994
TNF production by the medullary thick ascending limb of Henle's loop
Macica C, Escalante B, Conners M, Ferreri N. TNF production by the medullary thick ascending limb of Henle's loop. Kidney International 1994, 46: 113-121. PMID: 7933828, DOI: 10.1038/ki.1994.250.Peer-Reviewed Original Research
1992
Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats
Wilkes B, Kaplan R, Mento P, Aynedjian H, Macica C, Schlondorff D, Bank N. Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats. Kidney International 1992, 41: 992-999. PMID: 1387436, DOI: 10.1038/ki.1992.151.Peer-Reviewed Original ResearchConceptsRenal blood flowGlomerular filtration rateDiabetic ratsThromboxane receptorFiltration rateBlood flowNormal controlsReceptor sitesHigher renal blood flowEuglycemic diabetic ratsHyperglycemic diabetic ratsRenal hemodynamic responseStable thromboxane analogThromboxane synthetase inhibitionUrinary thromboxane excretionInjection of streptozotocinAngiotensin II receptorsThromboxane excretionVasoconstrictor responsesConstrictor responsesDiabetic kidneyEarly diabetesVasoconstrictor receptorsBlood glucoseRats 7
1991
Localization of endothelin-like immunoreactivity in rat kidneys
Wilkes B, Susin M, Mento P, Macica C, Girardi E, Boss E, Nord E. Localization of endothelin-like immunoreactivity in rat kidneys. American Journal Of Physiology 1991, 260: f913-f920. PMID: 2058711, DOI: 10.1152/ajprenal.1991.260.6.f913.Peer-Reviewed Original ResearchConceptsEndothelin-like immunoreactivityVasa rectaeEndothelin-1Renal papillaRat kidneyProximal tubule brush borderDistal nephron segmentsTubule brush borderNormal rat kidneyGlomerular immunostainingArcuate arteriesPeritubular capillariesRenal cortexRenal tissueImmunoperoxidase techniqueParacrine actionIntense immunostainingCytoplasmic immunostainingDuct epitheliumImmunostaining densityRenal medullaBig endothelinNephron segmentsImmunoreactivityImmunostainingGlomerular endothelin receptors during initiation and maintenance of ischemic acute renal failure in rats
Wilkes B, Pearl A, Mento P, Maita M, Macica C, Girardi E. Glomerular endothelin receptors during initiation and maintenance of ischemic acute renal failure in rats. American Journal Of Physiology 1991, 260: f110-f118. PMID: 1847009, DOI: 10.1152/ajprenal.1991.260.1.f110.Peer-Reviewed Original ResearchConceptsIschemic acute renal failureAcute renal failureRenal blood flowGlomerular filtration rateET receptorsRenal failureEndothelin receptorsET infusionElevated ET levelsLeft renal arteryMean arterial pressureNormal Sprague-Dawley ratsSprague-Dawley ratsReceptor sitesRenal hemodynamicsArterial pressureContralateral kidneyRenal arteryFiltration rateReceptor numberBlood flowET levelsRatsET bindingAdditional studies