2018
False-Positive Light Chain Clonal Restriction by Flow Cytometry in Patients Treated With Alemtuzumab
Chen PP, Tormey CA, Eisenbarth SC, Torres R, Richardson SS, Rinder HM, Smith BR, Siddon AJ. False-Positive Light Chain Clonal Restriction by Flow Cytometry in Patients Treated With Alemtuzumab. American Journal Of Clinical Pathology 2018, 151: 154-163. PMID: 30307483, DOI: 10.1093/ajcp/aqy129.Peer-Reviewed Original ResearchConceptsHealthy donor bloodAlemtuzumab treatmentDonor bloodBone marrowFlow cytometryLight chain restrictionT-cell prolymphocytic leukemiaB-cell neoplasmsLight chain clonalityFlow cytometry analysisAutoimmune diseasesHematologic malignanciesImmunophenotypic analysisChain restrictionAlemtuzumabT cellsB cellsProlymphocytic leukemiaImmunoglobulin G1PatientsMonoclonal antibodiesCytometry analysisSimilar findingsBloodClonal restriction
2012
Utility of peripheral blood flow cytometry in differentiating low grade versus high grade myelodysplastic syndromes (MDS) and in the evaluation of cytopenias.
Rashidi HH, Xu X, Wang HY, Shafi NQ, Rameshkumar K, Messer K, Smith BR, Rose MG. Utility of peripheral blood flow cytometry in differentiating low grade versus high grade myelodysplastic syndromes (MDS) and in the evaluation of cytopenias. International Journal Of Clinical And Experimental Pathology 2012, 5: 224-30. PMID: 22558477, PMCID: PMC3341683.Peer-Reviewed Original ResearchConceptsHigh-grade myelodysplastic syndromeChronic myelomonocytic leukemiaPeripheral blood flow cytometryEvaluation of cytopeniasBlood flow cytometryMyelodysplastic syndromeFlow cytometryDifferential diagnosisHigh-risk myelodysplastic syndromeLow-grade myelodysplastic syndromesRisk myelodysplastic syndromesCMML patientsMyelomonocytic leukemiaDiagnostic utilityCytopeniasPatientsCytometrySyndromeLow gradeDiagnosisLeukemia
2009
The utility of flow cytometric immunophenotyping in cytopenic patients with a non-diagnostic bone marrow: A prospective study
Truong F, Smith BR, Stachurski D, Cerny J, Medeiros LJ, Woda BA, Wang A. The utility of flow cytometric immunophenotyping in cytopenic patients with a non-diagnostic bone marrow: A prospective study. Leukemia Research 2009, 33: 1039-1046. PMID: 19232722, DOI: 10.1016/j.leukres.2009.01.012.Peer-Reviewed Original ResearchConceptsMyelodysplastic syndromeCytopenic patientsFlow cytometricPredictive valueGroup 1 patientsGroup 2 patientsHematology outpatient clinicBone marrow aspirateNegative predictive valuePositive predictive valueFCM resultsMedian followMyelomonocytic maturationAbnormal cytogeneticsBM examinationBM diseaseClinical entityOutpatient clinicProspective studyMedical causesMorphological dysplasiaClinical managementMarrow aspiratesIdiopathic cytopeniaPatients
2008
DNA ploidy analysis as an adjunct for the detection of relapse in B-lineage acute lymphoblastic leukemia
Kenney B, Zieske A, Rinder H, Smith B. DNA ploidy analysis as an adjunct for the detection of relapse in B-lineage acute lymphoblastic leukemia. Leukemia & Lymphoma 2008, 49: 42-48. PMID: 18203010, DOI: 10.1080/10428190701760052.Peer-Reviewed Original ResearchConceptsAcute lymphoblastic leukemiaDetection of relapseDNA ploidy analysisLymphoblastic leukemiaPloidy analysisB-lineageB-lineage acute lymphoblastic leukemiaCytometric DNA ploidy analysisDiagnosis of relapseNormal precursor B cellsPrecursor B cellsOriginal immunophenotypeRelapsed diseaseUnique immunophenotypeLeukemic immunophenotypesImmunophenotypic detectionRelapseB cellsPatientsImmunophenotypeFlow immunophenotypingFlow cytometryAneuploid populationsDiagnosisLeukemia
2007
The Goals of Resident Training in Laboratory Medicine in Combined Anatomic Pathology/Clinical Pathology Programs: An Overview
Wells A, Smith BR. The Goals of Resident Training in Laboratory Medicine in Combined Anatomic Pathology/Clinical Pathology Programs: An Overview. Clinics In Laboratory Medicine 2007, 27: 229-240. PMID: 17556082, DOI: 10.1016/j.cll.2007.03.001.Peer-Reviewed Original Research
2005
Development of a BCR/ABL Real-Time Quantitative RT-PCR Assay and Correlation with an Existing Qualitative Test.
Howe J, Crouch J, Smith B. Development of a BCR/ABL Real-Time Quantitative RT-PCR Assay and Correlation with an Existing Qualitative Test. Blood 2005, 106: 4879. DOI: 10.1182/blood.v106.11.4879.4879.Peer-Reviewed Original ResearchChronic myeloid leukemiaRT-PCR testPatient samplesBcr/abl translocationQuantitative RT-PCR testBCR/ABLReal-time quantitative RTRT-PCR assaysCML patientsMyeloid leukemiaTherapeutic agentsTumor cellsQualitative testQuantitative RTPatientsInitial screenNegative resultsRT-PCR screenQuantitative testPCR assaysAssaysTesting strategiesQualitative screenSpecific primersComplete correlation
2004
Effects of ε-Aminocaproic Acid and Aprotinin on Leukocyte–Platelet Adhesion in Patients Undergoing Cardiac Surgery
Greilich PE, Brouse CF, Rinder CS, Smith BR, Sandoval BA, Rinder HM, Eberhart RC, Jessen ME. Effects of ε-Aminocaproic Acid and Aprotinin on Leukocyte–Platelet Adhesion in Patients Undergoing Cardiac Surgery. Anesthesiology 2004, 100: 225-233. PMID: 14739793, DOI: 10.1097/00000542-200402000-00008.Peer-Reviewed Original ResearchConceptsEpsilon-aminocaproic acidCardiopulmonary bypassLeukocyte-platelet adhesionPlatelet activationPlatelet CD62PCardiac surgeryPlasmin activityAdministration of aprotininDouble-blind fashionMonocyte-platelet conjugatesActivation of leukocytesD-dimer formationConjugate formationAbility of aprotininMonocyte CD11bSaline groupCD11b expressionLeukocyte activationΕ-aminocaproic acidPatientsUseful markerClinical settingAprotininLeukocytesSurgery
2002
Reticulated platelets predict platelet count recovery following chemotherapy
Wang C, Smith BR, Ault KA, Rinder HM. Reticulated platelets predict platelet count recovery following chemotherapy. Transfusion 2002, 42: 368-374. PMID: 11961244, DOI: 10.1046/j.1537-2995.2002.00040.x.Peer-Reviewed Original ResearchConceptsPlatelet count recoveryPercentage of RPProphylactic platelet transfusionsCount recoveryPlatelet transfusionsPlatelet recoveryStress thrombopoiesisPlatelet count increaseIdiopathic thrombocytopenic purpuraPlatelet count nadirsChemotherapy-induced thrombocytopeniaNegative predictive valueEvaluable patientsMarrow suppressionThrombocytopenic purpuraChemotherapy patientsThrombocytopenia patientsLower percentagePatientsPredictive valueReproducible indexThrombocytopeniaTransfusionChemotherapyIncreased percentage
1998
Morphologic, Immunophenotypic, and Molecular Evaluation of Bone Marrow Involvement in Non-Hodgkin's Lymphoma
Crotty P, Smith B, Tallini G. Morphologic, Immunophenotypic, and Molecular Evaluation of Bone Marrow Involvement in Non-Hodgkin's Lymphoma. Applied Immunohistochemistry & Molecular Morphology 1998, 7: 90-95. PMID: 9785007, DOI: 10.1097/00019606-199804000-00005.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, CDBiomarkers, TumorBone MarrowBone Marrow ExaminationClone CellsFlow CytometryGene Rearrangement, B-LymphocyteGene Rearrangement, T-LymphocyteHumansImmunophenotypingLymphoma, B-CellLymphoma, Non-HodgkinLymphoma, T-CellNeoplasm ProteinsNeoplastic Stem CellsPolymerase Chain ReactionSensitivity and SpecificityConceptsPrimer polymerase chain reactionMarrow involvementT-cell neoplasiaFlow cytometryB-cell neoplasiaObjective evidenceT-cell receptor gene rearrangementsBone marrow involvementConsensus primer polymerase chain reactionNon-Hodgkin lymphomaChronic lymphocytic leukemiaB-cell lymphomaT-cell neoplasmsB-cell neoplasmsReceptor gene rearrangementsDetection of clonalityDetectable diseaseHodgkin's lymphomaPolymerase chain reactionLymphocytic leukemiaApparent diseaseLymphomaPatientsImportant adjunctNeoplasiaAnti-C5 single chain antibody therapy blocks complement & leukocyte activation and reduces myocardial tissue damage in CPB patients
Rollins S, Fitch J, Shernan S, Rinder C, Rinder H, Smith B, Collard C, Stahl G, Alford B, Li L, Matis L. Anti-C5 single chain antibody therapy blocks complement & leukocyte activation and reduces myocardial tissue damage in CPB patients. Molecular Immunology 1998, 35: 397. DOI: 10.1016/s0161-5890(98)90798-2.Peer-Reviewed Original ResearchPeripheral blood progenitor cell cycle kinetics following priming with pIXY321 in patients treated with the "ICE" regimen.
Murren JR, Gollerkeri A, Anderson S, Lutzker S, Del Prete S, Zelterman D, Garrison L, Smith B. Peripheral blood progenitor cell cycle kinetics following priming with pIXY321 in patients treated with the "ICE" regimen. The Yale Journal Of Biology And Medicine 1998, 71: 355-65. PMID: 10527363, PMCID: PMC2578930.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAntineoplastic Combined Chemotherapy ProtocolsCarboplatinCarcinoma, Non-Small-Cell LungCarcinoma, Small CellCell CycleEtoposideFemaleGranulocyte-Macrophage Colony-Stimulating FactorHematopoietic Stem CellsHumansIfosfamideInterleukin-3Lung NeoplasmsMaleMiddle AgedNeutropeniaRecombinant Fusion ProteinsSurvival RateTreatment OutcomeConceptsCell lung cancerPeripheral bloodLung cancerGrowth factorProgenitor cellsDay 1Non-small cell lung cancerSmall cell lung cancerCycle-specific chemotherapyCell cycle distributionHematopoietic growth factorsProgenitor cell cyclingHematologic recoveryPartial responseHematopoietic progenitor cellsCell cycle kineticsPreclinical dataCertain growth factorsSpecific chemotherapySubcutaneous injectionTransient fallCycling progenitor cellsReduced riskPatientsMarrow compartmentDifferences in Platelet α-granule Release between Normals and Immune Thrombocytopenic Patients and between Young and Old Platelets
Rinder HM, Tracey JB, Recht M, DeCastro L, Rinder CS, McHugh C, Smith BR. Differences in Platelet α-granule Release between Normals and Immune Thrombocytopenic Patients and between Young and Old Platelets. Thrombosis And Haemostasis 1998, 80: 457-462. PMID: 9759627, DOI: 10.1055/s-0037-1615229.Peer-Reviewed Original ResearchConceptsImmune thrombocytopenic purpuraThrombin receptor agonist peptideAlpha-granule releaseITP patientsOld plateletsThrombocytopenic patientsImmune thrombocytopenic patientsPlatelet α-granule releaseΑ-granule releaseNormal human controlsMaintenance of hemostasisControl RPSerious bleedingThrombocytopenic purpuraMegakaryocytic hypoplasiaPatient groupReticulated plateletsNormal controlsPatientsPlatelet responseAgonist peptideYoung plateletsPlateletsHemostatic activityCD62P
1996
Gene Therapy in the United States: A Five-Year Status Report
Ross G, Erickson R, Knorr D, Motulsky A, Parkman R, Samulski J, Straus S, Smith B. Gene Therapy in the United States: A Five-Year Status Report. Human Gene Therapy 1996, 7: 1781-1790. PMID: 8886849, DOI: 10.1089/hum.1996.7.14-1781.Peer-Reviewed Original ResearchConceptsInstitutional review boardLocal institutional review boardFDA approvalHuman gene transfer trialsPhase I/IIGene transfer studiesPhase II studyPhase III studyRecruitment of patientsGene therapyYears of ageGene transfer trialsFinal FDA approvalII studyIII studyTotal patientsMedian timeFirst patientAnatomic distributionExperimental therapiesUnexpected toxicitiesNineteen studiesPatientsAutopsy rateAcademic centers
1995
Acadesine inhibits neutrophil CD11b up-regulation in vitro and during in vivo cardiopulmonary bypass
Mathew J, Rinder C, Tracey J, Auszura L, O'Connor T, Davis E, Smith B. Acadesine inhibits neutrophil CD11b up-regulation in vitro and during in vivo cardiopulmonary bypass. Journal Of Thoracic And Cardiovascular Surgery 1995, 109: 448-456. PMID: 7877305, DOI: 10.1016/s0022-5223(95)70275-x.Peer-Reviewed Original ResearchConceptsGranulocyte CD11bCardiopulmonary bypassReperfusion injuryIschemic tissueHigh-dose treatment groupVivo reperfusion injuryGranulocyte CD11b expressionCD11b/CD18Acadesine groupMulticenter trialCD11b expressionAdenosine levelsTreatment groupsAnimal modelsCD11bControl diluentAcadesineBypassInjuryWhole bloodGranulocyte adhesionSimilar inhibitionVivo trialsPatientsTrials
1994
B-Cell Precursor Bone Marrow Reconstitution After Bone Marrow Transplantation
Leitenberg D, Rappeport J, Smith B. B-Cell Precursor Bone Marrow Reconstitution After Bone Marrow Transplantation. American Journal Of Clinical Pathology 1994, 102: 231-236. PMID: 8042594, DOI: 10.1093/ajcp/102.2.231.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAntigens, CDBlotting, SouthernB-LymphocytesBone MarrowBone Marrow CellsBone Marrow TransplantationChildChild, PreschoolClone CellsFemaleFlow CytometryFluorescent Antibody TechniqueGene Rearrangement, B-Lymphocyte, Heavy ChainHematopoietic Stem CellsHumansImmunophenotypingInfantKineticsMaleMiddle AgedNeprilysinConceptsBone marrow transplantationMarrow transplantationB cell subsetsBone marrow reconstitutionB cell precursorsSurface antigenic phenotypeImmature B cellsImmunoglobulin gene rearrangementsHumoral immunodeficiencyMonoclonal gammapathyMarrow reconstitutionAntigenic phenotypeB cellsTransplantationGene rearrangementsMarked increaseLeukemia lymphoblastsCellsPatientsGammapathyImmunodeficiencyMarrowCD34ReconstitutionMonths
1993
Reticulated platelets in the evaluation of thrombopoietic disorders.
Rinder HM, Munz UJ, Ault KA, Bonan JL, Smith BR. Reticulated platelets in the evaluation of thrombopoietic disorders. Archives Of Pathology & Laboratory Medicine 1993, 117: 606-10. PMID: 8503732.Peer-Reviewed Original ResearchConceptsImmune platelet destructionImmune thrombocytopeniaPlatelet destructionNormal subjectsImmune thrombocytopenic purpuraThird of patientsSubset of patientsPlatelet determinationAbsence of megakaryocytesPlatelet-associated IgGChemotherapy-induced thrombocytopeniaInvasive diagnostic testsPeripheral blood plateletsFlow cytometric assayIgG levelsThrombocytopenic purpuraReticulated plateletsImmune destructionPlatelet valuesPatientsPlatelet IgGBone marrowThrombocytopeniaIgG dataLaboratory diagnosisPhenotypic and Functional Analysis of Expanded Natural Killer Cell Subpopulations in Hodgkin’s Disease Patients Treated with Lymphoid Irradiation
Macklis R, Mauch P, Thompson L, Burakoff S, Smith B. Phenotypic and Functional Analysis of Expanded Natural Killer Cell Subpopulations in Hodgkin’s Disease Patients Treated with Lymphoid Irradiation. Oncology 1993, 50: 323-328. PMID: 8497384, DOI: 10.1159/000227203.Peer-Reviewed Original ResearchConceptsNK cell subsetsNK cell compartmentHodgkin's disease patientsDisease patientsLymphoid irradiationNK cellsCell subsetsNatural killer cell subpopulationsSpecific NK cell subsetsLong-term immunosuppressionNK cell assaysCell compartmentSignificant changesCell subpopulationsPatientsCytometric cell sortingLytic activityCell assayImmunophenotypeCell sortingCytotoxicity spectrumImmunosuppressionCellsSubsetCompartments
1990
Retroviral mediated transfer and expression of exogenous genes in primary lymphoid cells: assaying for a viral transactivator activity in normal and malignant cells.
Strair R, Towle M, Heald P, Smith B. Retroviral mediated transfer and expression of exogenous genes in primary lymphoid cells: assaying for a viral transactivator activity in normal and malignant cells. Blood 1990, 76: 1201-8. PMID: 2144777, DOI: 10.1182/blood.v76.6.1201.bloodjournal7661201.Peer-Reviewed Original ResearchConceptsAdenovirus E2 promoterBeta-galactosidase geneLymphoid cellsE2 promoterRecombinant retrovirusPrimary lymphoid cellsPrimary cellsSpecific cell typesViral gene productsLymphoproliferative disordersBeta-galactosidase activityGene productsMalignant cellsSimilar infectionsExogenous genesExogenous promoterTransactivator activityCell typesPromoterGenesInfectionRetrovirusesCellsExpressionPatientsRetroviral Mediated Transfer and Expression of Exogenous Genes in Primary Lymphoid Cells: Assaying for a Viral Transactivator Activity in Normal and Malignant Cells
Strair R, Towle M, Heald P, Smith B. Retroviral Mediated Transfer and Expression of Exogenous Genes in Primary Lymphoid Cells: Assaying for a Viral Transactivator Activity in Normal and Malignant Cells. Blood 1990, 76: 1201-1208. DOI: 10.1182/blood.v76.6.1201.1201.Peer-Reviewed Original ResearchAdenovirus E2 promoterLymphoid cellsBeta-galactosidase geneE2 promoterPrimary lymphoid cellsRecombinant retrovirusPrimary cellsSpecific cell typesLymphoproliferative disordersViral gene productsRetroviral-Mediated TransferMalignant cellsBeta-galactosidase activitySimilar infectionsGene productsExogenous genesExogenous promoterTransactivator activityCell typesPromoterGenesInfectionCellsRetrovirusesPatientsCyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation in refractory Hodgkin's disease and non-Hodgkin's lymphoma: a dose-finding study.
Wheeler C, Antin JH, Churchill WH, Come SE, Smith BR, Bubley GJ, Rosenthal DS, Rappaport JM, Ault KA, Schnipper LE. Cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation in refractory Hodgkin's disease and non-Hodgkin's lymphoma: a dose-finding study. Journal Of Clinical Oncology 1990, 8: 648-56. PMID: 2313334, DOI: 10.1200/jco.1990.8.4.648.Peer-Reviewed Original ResearchConceptsAutologous bone marrow transplantationMaximum-tolerated doseBone marrow transplantationRelapsed lymphomaComplete responseMarrow transplantationDose levelsVP-16Refractory Hodgkin's diseaseTreatment-related mortalityDose-finding studyAssessable patientsAcceptable toxicityConditioning regimenInterstitial pneumonitisHodgkin's diseaseResidual diseaseHodgkin's lymphomaPatient populationDisease progressionHigh dosePatientsLymphomaDiseaseCBV