Predicting physician departure with machine learning on EHR use patterns: A longitudinal cohort from a large multi-specialty ambulatory practice
Lopez K, Li H, Paek H, Williams B, Nath B, Melnick E, Loza A. Predicting physician departure with machine learning on EHR use patterns: A longitudinal cohort from a large multi-specialty ambulatory practice. PLOS ONE 2023, 18: e0280251. PMID: 36724149, PMCID: PMC9891518, DOI: 10.1371/journal.pone.0280251.Peer-Reviewed Original ResearchConceptsElectronic health recordsEHR use patternsHealthcare industryPhysician departureSHAP valuesHealth recordsPhysician characteristicsLongitudinal cohortPhysician ageRisk physiciansAmbulatory practiceTargeted interventionsAppropriate interventionsPhysiciansTop variablesDocumentation timePhysician turnoverPredictive modelHeavy burdenInterventionInboxPhysician demandMachineValidatingPatientsQuantifying EHR and Policy Factors Associated with the Gender Productivity Gap in Ambulatory, General Internal Medicine
Li H, Rotenstein L, Jeffery M, Paek H, Nath B, Williams B, McLean R, Goldstein R, Nuckols T, Hoq L, Melnick E. Quantifying EHR and Policy Factors Associated with the Gender Productivity Gap in Ambulatory, General Internal Medicine. Journal Of General Internal Medicine 2023, 39: 557-565. PMID: 37843702, PMCID: PMC10973284, DOI: 10.1007/s11606-023-08428-5.Peer-Reviewed Original ResearchElectronic health recordsWork relative value unitsPhysician genderPractice characteristicsWomen physiciansMen physiciansGeneral internal medicine physiciansEHR useInternal medicine physiciansPhysician productivityGeneral internal medicineMultivariable adjustmentPatient counselingCare discussionsPhysician ageClinical activityMedicine physicians