2016
Mechanics of Microenvironment as Instructive Cues Guiding Stem Cell Behavior
Kshitiz, Afzal J, Chang H, Goyal R, Levchenko A. Mechanics of Microenvironment as Instructive Cues Guiding Stem Cell Behavior. Current Stem Cell Reports 2016, 2: 62-72. DOI: 10.1007/s40778-016-0033-9.Peer-Reviewed Original ResearchStem cell biologyStem cell behaviorMechanical cuesCell biologyCell behaviorFundamental stem cell biologyNovel bioengineering toolsIntracellular signal transductionStem cell phenotypeExtracellular stimuliSignal transductionAdult tissuesInstructive cuesBioengineering toolsFuture therapeutic applicationsExtracellular matrixStem cellsComplex milieuCell phenotypeCulture conditionsRegenerative medicineMechanotransductionBiologyTopographical architectureTherapeutic applications
2015
Erratum: Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer
Feng Y, Zhu M, Dangelmajer S, Lee Y, Wijesekera O, Castellanos C, Denduluri A, Chaichana K, Li Q, Zhang H, Levchenko A, Guerrero-Cazares H, Quiñones-Hinojosa A. Erratum: Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death & Disease 2015, 6: e1797-e1797. PMID: 26111059, PMCID: PMC4669846, DOI: 10.1038/cddis.2015.176.Peer-Reviewed Original Research
2014
Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer
Feng Y, Zhu M, Dangelmajer S, Lee Y, Wijesekera O, Castellanos C, Denduluri A, Chaichana K, Li Q, Zhang H, Levchenko A, Guerrero-Cazares H, Quiñones-Hinojosa A. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death & Disease 2014, 5: e1567-e1567. PMID: 25501828, PMCID: PMC4649837, DOI: 10.1038/cddis.2014.521.Peer-Reviewed Original ResearchConceptsHuman adipose-derived mesenchymal stem cellsAdipose-derived mesenchymal stem cellsMesenchymal stem cellsBrain tumor-initiating cellsAnti-inflammatory propertiesStem cellsAmyotrophic lateral sclerosisTumor-associated fibroblastsTumor-initiating cellsBrain cancer cellsMyocardial infarctionHypoxic culture conditionsClinical investigationLateral sclerosisLess cell deathBrain cancerMigratory capabilityCancer cellsLow oxygen tensionOxygen tensionRegenerative potentialMultipotent cellsAnticancer propertiesCell deathHypoxia
2010
Using Lab-on-a-Chip Technologies for Stem Cell Biology
Gupta K, Kim D, Ellison D, Smith C, Levchenko A. Using Lab-on-a-Chip Technologies for Stem Cell Biology. Stem Cell Biology And Regenerative Medicine 2010, 483-498. DOI: 10.1007/978-1-60761-860-7_30.Peer-Reviewed Original ResearchMicrofluidic deviceStem cell researchCell researchUse microfluidic deviceApplication of microfluidicsMicrofluidic-based techniquesHigh-throughput monitoringStem cell cultureHigh-throughput fashionMicrofluidic platformChip technologyStem cell researchersStem cell biologyCell researchersMicrofluidicsOptical techniquesTransparent materialsMicrotechnologyDevicesStem cellsExtracellular microenvironmentCell culturesCellular behaviorConsiderable capabilityTechnologyTissue engineered cardiac stem cell grafts for repairing heart with myocardial infarction
Kim D, Smith R, Gupta K, Kim P, Suh K, Marban E, Levchenko A. Tissue engineered cardiac stem cell grafts for repairing heart with myocardial infarction. The FASEB Journal 2010, 24: 599.11-599.11. DOI: 10.1096/fasebj.24.1_supplement.599.11.Peer-Reviewed Original ResearchCardiac stem cellsStem cellsHost cardiac tissueBiocompatible hydrogelsRat myocardial infarction modelStem cell sheetsAdult cardiac stem cellsCardiac differentiationCardiac regenerationTissue integrationScaffoldsTroponin I.Tissue repairStem cell graftsCell sheetsHigh cell mortalityMyocardial infarction modelCell graftsInfarcted heartCell adhesion