2024
Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract
Mao T, Kim J, Peña-Hernández M, Valle G, Moriyama M, Luyten S, Ott I, Gomez-Calvo M, Gehlhausen J, Baker E, Israelow B, Slade M, Sharma L, Liu W, Ryu C, Korde A, Lee C, Monteiro V, Lucas C, Dong H, Yang Y, Initiative Y, Gopinath S, Wilen C, Palm N, Dela Cruz C, Iwasaki A, Vogels C, Hahn A, Chen N, Breban M, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Grubaugh N. Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319566121. PMID: 38648490, PMCID: PMC11067057, DOI: 10.1073/pnas.2319566121.Peer-Reviewed Original ResearchConceptsInterferon-stimulated genesRespiratory infectionsStrains of influenza A virusTreatment of respiratory viral infectionsRespiratory virus infectionsInfluenza A virusMouse model of COVID-19Respiratory viral infectionsNeomycin treatmentExpression of interferon-stimulated genesUpper respiratory infectionInterferon-stimulated gene expressionLower respiratory infectionsBroad spectrum of diseasesAdministration of neomycinRespiratory viral diseasesDisease to patientsUpper respiratory tractIntranasal deliveryCongenic miceIntranasal applicationNasal mucosaSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2A virus
2023
SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC)
Proal A, VanElzakker M, Aleman S, Bach K, Boribong B, Buggert M, Cherry S, Chertow D, Davies H, Dupont C, Deeks S, Eimer W, Ely E, Fasano A, Freire M, Geng L, Griffin D, Henrich T, Iwasaki A, Izquierdo-Garcia D, Locci M, Mehandru S, Painter M, Peluso M, Pretorius E, Price D, Putrino D, Scheuermann R, Tan G, Tanzi R, VanBrocklin H, Yonker L, Wherry E. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nature Immunology 2023, 24: 1616-1627. PMID: 37667052, DOI: 10.1038/s41590-023-01601-2.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 reservoirPost-acute sequelaeImmune responseHost immune responseCoronavirus SARS-CoV-2COVID-19SARS-CoV-2Neuroimmune abnormalitiesAcute infectionLong COVIDClinical trialsViral RNAMillions of peopleSequelaeFurther studiesViral proteinsPathologyResearch prioritiesRNA/proteinBiological factorsPASCAntiviralsInfectionAbnormalitiesTrialsAn AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan W, Davidson E, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder E, Coppi A, Schulz W, Iwasaki A, Pierce R, Cruz C, Desir G, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis N, Ko A, Thompson D, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Human Genomics 2023, 17: 80. PMID: 37641126, PMCID: PMC10463861, DOI: 10.1186/s40246-023-00521-4.Peer-Reviewed Original ResearchConceptsCOVID-19 patientsDisease severityViral outbreaksFuture viral outbreaksLength of hospitalizationIntensive care unitWorse disease prognosisLife-threatening illnessEffective medical interventionsCOVID-19Clinical decision treeGlucuronic acid metabolitesNew potential biomarkersHospitalization lengthCare unitComorbidity dataSerotonin levelsDisease progressionHealthy controlsPatient outcomesDisease prognosisPatient transferPatientsHealthcare resourcesPotential biomarkersPolymer nanoparticles deliver mRNA to the lung for mucosal vaccination
Suberi A, Grun M, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit A, Homer R, Iwasaki A, Suh H, Saltzman W. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Science Translational Medicine 2023, 15: eabq0603. PMID: 37585505, PMCID: PMC11137749, DOI: 10.1126/scitranslmed.abq0603.Peer-Reviewed Original ResearchConceptsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Lethal viral challengeAntigen-presenting cellsSyndrome coronavirus 2Humoral adaptive immunityLung-targeting deliveryIntranasal vaccinationMucosal vaccinationPulmonary diseaseMucosal vaccinesSusceptible miceCoronavirus 2Viral challengeAdaptive immunityLungTranslational potentialMessenger RNA (mRNA) therapeuticsVaccinationMRNADeliveryTherapeuticsRNA therapeuticsTherapeutic deliveryCytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis
Barmada A, Klein J, Ramaswamy A, Brodsky N, Jaycox J, Sheikha H, Jones K, Habet V, Campbell M, Sumida T, Kontorovich A, Bogunovic D, Oliveira C, Steele J, Hall E, Pena-Hernandez M, Monteiro V, Lucas C, Ring A, Omer S, Iwasaki A, Yildirim I, Lucas C. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis. Science Immunology 2023, 8: eadh3455-eadh3455. PMID: 37146127, PMCID: PMC10468758, DOI: 10.1126/sciimmunol.adh3455.Peer-Reviewed Original ResearchConceptsMRNA vaccinesSARS-CoV-2 mRNA vaccinesSARS-CoV-2 mRNA vaccinationC-reactive protein levelsB-type natriuretic peptidePeripheral blood mononuclear cellsCardiac tissue inflammationDeep immune profilingSerum soluble CD163Vaccine-associated myocarditisCohort of patientsBlood mononuclear cellsCytotoxic T cellsLate gadolinium enhancementHypersensitivity myocarditisElevated troponinMRNA vaccinationImaging abnormalitiesNK cellsImmune profilingKiller cellsMyeloid responseNatriuretic peptideHumoral mechanismsInflammatory cytokinesEnhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpressionNonsystematic Reporting Biases of the SARS-CoV-2 Variant Mu Could Impact Our Understanding of the Epidemiological Dynamics of Emerging Variants
Petrone M, Lucas C, Menasche B, Breban M, Yildirim I, Campbell M, Omer S, Holmes E, Ko A, Grubaugh N, Iwasaki A, Wilen C, Vogels C, Fauver J. Nonsystematic Reporting Biases of the SARS-CoV-2 Variant Mu Could Impact Our Understanding of the Epidemiological Dynamics of Emerging Variants. Genome Biology And Evolution 2023, 15: evad052. PMID: 36974986, PMCID: PMC10113931, DOI: 10.1093/gbe/evad052.Peer-Reviewed Original ResearchPharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection
Wei J, Patil A, Collings C, Alfajaro M, Liang Y, Cai W, Strine M, Filler R, DeWeirdt P, Hanna R, Menasche B, Ökten A, Peña-Hernández M, Klein J, McNamara A, Rosales R, McGovern B, Luis Rodriguez M, García-Sastre A, White K, Qin Y, Doench J, Yan Q, Iwasaki A, Zwaka T, Qi J, Kadoch C, Wilen C. Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection. Nature Genetics 2023, 55: 471-483. PMID: 36894709, PMCID: PMC10011139, DOI: 10.1038/s41588-023-01307-z.Peer-Reviewed Original ResearchConceptsMSWI/SNF complexesAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionHost-directed therapeutic targetSyndrome coronavirus 2 infectionSARS-CoV-2 infectionSWItch/Sucrose Non-Fermentable (SWI/SNF) chromatinSARS-CoV-2 susceptibilityNon-fermentable (SWI/SNF) chromatinCoronavirus 2 infectionEnzyme 2 (ACE2) expressionSARS-CoV-2 variantsHuman cell typesPrimary human cell typesAirway epithelial cellsDrug-resistant variantsNew drug targetsChromatin accessibilitySNF complexACE2 locusACE2 expressionFactor complexHost determinantsTherapeutic targetConfer resistanceSARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity
Jaycox J, Lucas C, Yildirim I, Dai Y, Wang E, Monteiro V, Lord S, Carlin J, Kita M, Buckner J, Ma S, Campbell M, Ko A, Omer S, Lucas C, Speake C, Iwasaki A, Ring A. SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity. Nature Communications 2023, 14: 1299. PMID: 36894554, PMCID: PMC9996559, DOI: 10.1038/s41467-023-36686-8.Peer-Reviewed Original ResearchConceptsVaccine-associated myocarditisAutoimmune patientsAutoantibody reactivitySARS-CoV-2 mRNA vaccinationVaccine-related adverse effectsSARS-CoV-2 immunitySARS-CoV-2 infectionAcute COVID-19Development of autoantibodiesCOVID-19 patientsAnti-viral immunityVirus-specific antibodiesCOVID-19 vaccineCOVID-19Humoral autoimmunityMRNA vaccinationAutoantibody responsePost vaccinationAutoantibody developmentAutoimmune diseasesHumoral responseHealthy individualsPatientsAntigen profilingAdverse effectsAge-dependent impairment in antibody responses elicited by a homologous CoronaVac booster dose
Filardi B, Monteiro V, Schwartzmann P, do Prado Martins V, Zucca L, Baiocchi G, Malik A, Silva J, Hahn A, Chen N, Pham K, Pérez-Then E, Miric M, Brache V, Cochon L, Larocca R, Della Rosa Mendez R, Silveira D, Pinto A, Croda J, Yildirim I, Omer S, Ko A, Vermund S, Grubaugh N, Iwasaki A, Lucas C, Initiative Y, Vogels C, Breban M, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W. Age-dependent impairment in antibody responses elicited by a homologous CoronaVac booster dose. Science Translational Medicine 2023, 15: eade6023. PMID: 36791210, DOI: 10.1126/scitranslmed.ade6023.Peer-Reviewed Original ResearchConceptsBooster doseAntibody responseNeutralization titersVirus-specific IgG titersOlder adultsAntiviral humoral immunityPlasma antibody responsesHigh-risk populationSARS-CoV-2 spikeYears of ageAge-dependent impairmentHeterologous regimensBooster dosesBooster vaccineCoronaVac vaccineIgG titersProtective immunityHumoral immunityHumoral responseCoronaVacOmicron waveBooster strategyAge groupsEarly controlVaccineWhy we need a deeper understanding of the pathophysiology of long COVID
Iwasaki A, Putrino D. Why we need a deeper understanding of the pathophysiology of long COVID. The Lancet Infectious Diseases 2023, 23: 393-395. PMID: 36967698, PMCID: PMC9928485, DOI: 10.1016/s1473-3099(23)00053-1.Peer-Reviewed Original ResearchPD-1highCXCR5–CD4+ peripheral helper T cells promote CXCR3+ plasmablasts in human acute viral infection
Asashima H, Mohanty S, Comi M, Ruff W, Hoehn K, Wong P, Klein J, Lucas C, Cohen I, Coffey S, Lele N, Greta L, Raddassi K, Chaudhary O, Unterman A, Emu B, Kleinstein S, Montgomery R, Iwasaki A, Dela Cruz C, Kaminski N, Shaw A, Hafler D, Sumida T. PD-1highCXCR5–CD4+ peripheral helper T cells promote CXCR3+ plasmablasts in human acute viral infection. Cell Reports 2023, 42: 111895. PMID: 36596303, PMCID: PMC9806868, DOI: 10.1016/j.celrep.2022.111895.Peer-Reviewed Original ResearchConceptsAcute viral infectionTph cellsViral infectionCXCR3 expressionClinical outcomesHelper TSevere viral infectionsB cell helpBetter clinical outcomesProtective humoral immunityT cell-B cell interactionsKey immune responsesPlasmablast expansionB cell differentiationCell subsetsHumoral immunityCell helpImmune responseInterferon γPlasmablast differentiationB cellsPlasmablastsCell responsesInfectionCD4
2022
Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck J, Lucas C, Klein J, Filler R, Strine M, Sy M, Deme A, Badiane A, Dieye B, Ndiaye I, Diedhiou Y, Mbaye A, Diagne C, Vigan-Womas I, Mbengue A, Sadio B, Diagne M, Moore A, Mangou K, Diallo F, Sene S, Pouye M, Faye R, Diouf B, Nery N, Costa F, Reis M, Muenker M, Hodson D, Mbarga Y, Katz B, Andrews J, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall A, Vélez J, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé F, Dabiré R, Moukoko C, Ouédraogo J, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen C, Ko A, Ring A, Bei A. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Scientific Reports 2022, 12: 22175. PMID: 36550362, PMCID: PMC9778468, DOI: 10.1038/s41598-022-26709-7.Peer-Reviewed Original ResearchConceptsCross-reactive antibodiesSARS-CoV-2Positive SARS-CoV-2 antibody resultsPositive SARS-CoV-2 antibodiesSARS-CoV-2 reactivitySARS-CoV-2 antibodiesAcute malaria infectionSpike proteinAntibody test resultsPre-pandemic samplesMalaria-endemic countriesPopulation-level immunityMalaria-endemic regionsSpike S1 subunitNon-endemic countriesSARS-CoV-2 spike proteinSARS-CoV-2 proteinsPopulation-level exposureCOVID-19 transmissionMalaria exposureFalse-positive resultsMalaria infectionDisease burdenPlasmodium infectionAntibody resultsAssociation between primary or booster COVID-19 mRNA vaccination and Omicron lineage BA.1 SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection: A test-negative case–control analysis
Lind M, Robertson A, Silva J, Warner F, Coppi A, Price N, Duckwall C, Sosensky P, Di Giuseppe E, Borg R, Fofana M, Ranzani O, Dean N, Andrews J, Croda J, Iwasaki A, Cummings D, Ko A, Hitchings M, Schulz W. Association between primary or booster COVID-19 mRNA vaccination and Omicron lineage BA.1 SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection: A test-negative case–control analysis. PLOS Medicine 2022, 19: e1004136. PMID: 36454733, PMCID: PMC9714718, DOI: 10.1371/journal.pmed.1004136.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionBooster vaccinationPrior infectionOmicron infectionPrimary vaccinationMRNA vaccinationOdds ratioAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionPrior SARS-CoV-2 infectionTest-negative case-control analysisYale New Haven Health SystemTest-negative case-control studyCOVID-19 mRNA vaccinationSyndrome coronavirus 2 infectionOmicron variant infectionPrior infection statusCoronavirus 2 infectionCase-control studyCase-control analysisOdds of infectionRisk of infectionRace/ethnicityBooster dosesDate of testUnadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses
Mao T, Israelow B, Peña-Hernández MA, Suberi A, Zhou L, Luyten S, Reschke M, Dong H, Homer RJ, Saltzman WM, Iwasaki A. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 2022, 378: eabo2523. PMID: 36302057, PMCID: PMC9798903, DOI: 10.1126/science.abo2523.Peer-Reviewed Original ResearchConceptsRespiratory mucosaSystemic immunityLethal SARS-CoV-2 infectionAcute respiratory syndrome coronavirus 2 pandemicSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemicSARS-CoV-2 infectionProtective mucosal immunityCross-reactive immunityT cell responsesCoronavirus 2 pandemicPrimary vaccinationParenteral vaccinesMucosal immunityVaccine strategiesRespiratory tractImmunoglobulin AMemory BImmune memoryPartial immunityCell responsesPoor immunityImmunitySpike proteinMucosaVaccineGut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia
Bernard-Raichon L, Venzon M, Klein J, Axelrad J, Zhang C, Sullivan A, Hussey G, Casanovas-Massana A, Noval M, Valero-Jimenez A, Gago J, Putzel G, Pironti A, Wilder E, Thorpe L, Littman D, Dittmann M, Stapleford K, Shopsin B, Torres V, Ko A, Iwasaki A, Cadwell K, Schluter J. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nature Communications 2022, 13: 5926. PMID: 36319618, PMCID: PMC9626559, DOI: 10.1038/s41467-022-33395-6.Peer-Reviewed Original ResearchConceptsGut microbiome dysbiosisCOVID-19 patientsMicrobiome dysbiosisSecondary infectionSARS-CoV-2 infection inducesLife-threatening secondary infectionsTranslocation of bacteriaBlood culture resultsCOVID-19 severityAntimicrobial-resistant speciesCOVID-19Different clinical sitesMicrobial translocationBloodstream infectionsInfection inducesBarrier permeabilitySystemic circulationDysbiosisGoblet cellsPaneth cellsClinical sitesCulture resultsPatient healthGut microbiomePatientsThe neurobiology of long COVID
Monje M, Iwasaki A. The neurobiology of long COVID. Neuron 2022, 110: 3484-3496. PMID: 36288726, PMCID: PMC9537254, DOI: 10.1016/j.neuron.2022.10.006.Peer-Reviewed Original ResearchOperation Nasal Vaccine—Lightning speed to counter COVID-19
Topol EJ, Iwasaki A. Operation Nasal Vaccine—Lightning speed to counter COVID-19. Science Immunology 2022, 7: eadd9947. PMID: 35862488, DOI: 10.1126/sciimmunol.add9947.Peer-Reviewed Original ResearchMild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, O'Dea MR, Dutton S, Shamardani K, Nwangwu K, Mancusi R, Yalçın B, Taylor KR, Acosta-Alvarez L, Malacon K, Keough MB, Ni L, Woo PJ, Contreras-Esquivel D, Toland AMS, Gehlhausen JR, Klein J, Takahashi T, Silva J, Israelow B, Lucas C, Mao T, Peña-Hernández MA, Tabachnikova A, Homer RJ, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Vogel H, Hefti MM, Perl DP, Liddelow S, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022, 185: 2452-2468.e16. PMID: 35768006, PMCID: PMC9189143, DOI: 10.1016/j.cell.2022.06.008.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionMicroglial reactivityCognitive impairmentCSF cytokines/chemokinesCytokines/chemokinesSARS-CoV-2Early time pointsCCL11 levelsMild COVIDRespiratory influenzaHippocampal neurogenesisOligodendrocyte lossHippocampal pathologyMyelin lossNeurological symptomsImpaired neurogenesisCOVID survivorsNeurobiological effectsNeural dysregulationMyelin dysregulationCCL11Neural cellsTime pointsNeurogenesisMiceNo evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination
Lu-Culligan A, Tabachnikova A, Pérez-Then E, Tokuyama M, Lee HJ, Lucas C, Monteiro V, Miric M, Brache V, Cochon L, Muenker MC, Mohanty S, Huang J, Kang I, Dela Cruz C, Farhadian S, Campbell M, Yildirim I, Shaw AC, Ma S, Vermund SH, Ko AI, Omer SB, Iwasaki A. No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination. PLOS Biology 2022, 20: e3001506. PMID: 35609110, PMCID: PMC9129011, DOI: 10.1371/journal.pbio.3001506.Peer-Reviewed Original ResearchConceptsCOVID-19 mRNA vaccinationMRNA vaccinationEarly pregnancyFetal sizeCoronavirus disease 2019 (COVID-19) mRNA vaccinationSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Maternal antibody statusAdverse neonatal outcomesSyndrome coronavirus 2Birth defectsPolyinosinic-polycytidylic acidCrown-rump lengthGross birth defectsUnvaccinated adultsMaternal illnessNeonatal outcomesVaccinated adultsAntibody statusTLR3 agonistEarly immunizationMurine pregnancyAntibody inductionCoronavirus 2