Agnes Ferguson, PhD
Research Scientist in Cell BiologyDownloadHi-Res Photo
Cards
Appointments
Cell Biology
Primary
Contact Info
About
Titles
Research Scientist in Cell Biology
Appointments
Education & Training
- PhD
- University of Ottawa (2000)
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Agnes Ferguson's published research.
Publications Timeline
A big-picture view of Agnes Ferguson's research output by year.
Shawn Ferguson, PhD
Pietro De Camilli, MD
10Publications
1,800Citations
Publications
2021
Overlapping roles of JIP3 and JIP4 in promoting axonal transport of lysosomes in human iPSC-derived neurons
Gowrishankar S, Lyons L, Rafiq NM, Roczniak-Ferguson A, De Camilli P, Ferguson SM. Overlapping roles of JIP3 and JIP4 in promoting axonal transport of lysosomes in human iPSC-derived neurons. Molecular Biology Of The Cell 2021, 32: 1094-1103. PMID: 33788575, PMCID: PMC8351540, DOI: 10.1091/mbc.e20-06-0382.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsAxonal transportAlzheimer's disease-related amyloid precursor proteinAmyloidogenic APP processingAmyloid precursor proteinDependence of neuronsHuman iPSCNeuronal cell biologyAPP processingAxonal lysosomesNeuronsLoss of JIP3Lysosome abundanceMovement of lysosomesPrecursor proteinCellular modelCritical regulatorStem cellsPluripotent stem cellsAβ42 peptideIPSCsLysosome transportLysosomesOverlapping rolePathology
2019
Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis
Roczniak-Ferguson A, Ferguson SM. Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis. Life Science Alliance 2019, 2: e201900358. PMID: 31527135, PMCID: PMC6749094, DOI: 10.26508/lsa.201900358.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMultiple amyotrophic lateral sclerosisTDP-43 target genesNormal TDP-43 functionSpecific target transcriptsCell biological consequencesRNA-binding proteinTDP-43Disease-causing mutantsRegulation of cellPleiotropic requirementMultiple neurodegenerative diseasesOrganelle homeostasisTarget transcriptsMRNA splicingKnockout cellsTranscriptomic analysisMultiple organellesTDP-43 functionTarget genesCytoplasmic aggregatesNuclear envelopeTDP-43 mutationsTDP-43 depletionHuman TDP-43Morphological defectsLysosomes Dare Cells to be Different(iated)
Roczniak-Ferguson A, Ferguson SM. Lysosomes Dare Cells to be Different(iated). Cell Stem Cell 2019, 24: 199-200. PMID: 30735644, DOI: 10.1016/j.stem.2019.01.007.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
2016
C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling
Amick J, Roczniak-Ferguson A, Ferguson SM. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Molecular Biology Of The Cell 2016, 27: 3040-3051. PMID: 27559131, PMCID: PMC5063613, DOI: 10.1091/mbc.e16-01-0003.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsAmino acid availabilityAcid availabilityGenome-editing strategiesKO cell linesProtein complexesSubcellular localizationKnockout phenotypesC9orf72 proteinLysosomal siteBioinformatics predictionSMCR8Tumor suppressorSwollen lysosomesFunctional interactionLysosomesC9orf72 geneCell linesStructural similarityNormal functionC9orf72PhenotypeAmyotrophic lateral sclerosisBirt-HoggIntronsMTORC1
2013
Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases
Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases. Journal Of Cell Biology 2013, 202: 1107-1122. PMID: 24081491, PMCID: PMC3787382, DOI: 10.1083/jcb.201307084.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAmino AcidsBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsBlotting, WesternCarrier ProteinsCytoplasmFluorescent Antibody TechniqueHumansImmunoprecipitationLysosomesMechanistic Target of Rapamycin Complex 1Monomeric GTP-Binding ProteinsMultiprotein ComplexesProto-Oncogene ProteinsRecombinant ProteinsRNA, Small InterferingTOR Serine-Threonine KinasesTumor Suppressor ProteinsConceptsAmino acid-dependent activationAcid-dependent activationTranscription factor EBRag GTPasesSurface of lysosomesMTORC1-dependent phosphorylationAmino acid depletionLysosome recruitmentGTPase domainRAG interactionsCytoplasmic sequestrationLysosome functionGTPasesFLCNHuman diseasesFunction mutationsDevelopment of pneumothoraxProtein 1Direct interactionLysosomesCritical rolePulmonary cystsSite of actionAcid depletionFolliculin gene
2012
The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM. The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis. Science Signaling 2012, 5: ra42. PMID: 22692423, PMCID: PMC3437338, DOI: 10.1126/scisignal.2002790.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH Keywords14-3-3 ProteinsAnalysis of VarianceBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsElectrophoretic Mobility Shift AssayGene Expression RegulationHeLa CellsHomeostasisHumansLysosomesMechanistic Target of Rapamycin Complex 1Microphthalmia-Associated Transcription FactorMicroscopy, ConfocalMultiprotein ComplexesMutationPhosphorylationProteinsSignal TransductionTOR Serine-Threonine KinasesConceptsMTOR-dependent phosphorylationLysosomal functionTranscription factor MITFRapamycin complex 1Transcription factor TFEBMajor cellular siteTarget of mTORTranslocation of TFEBDefective organellesTranscriptional regulationCellular needsCellular homeostasisTranscriptional controlLysosome homeostasisLysosome biogenesisTranscription factorsLysosomal biogenesisPhysiological contextRegulatory mechanismsLysosome functionMechanistic targetTFEBCellular sitesLysosomal activityBiogenesis
2004
Emerging roles for p120-catenin in cell adhesion and cancer.
Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 2004, 23: 7947-56. PMID: 15489912, DOI: 10.1038/sj.onc.1208161.Peer-Reviewed Original Research
2003
Regulation of p120-catenin nucleocytoplasmic shuttling activity.
Roczniak-Ferguson A, Reynolds AB. Regulation of p120-catenin nucleocytoplasmic shuttling activity. J Cell Sci 2003, 116: 4201-12. PMID: 12953069, DOI: 10.1242/jcs.00724.Peer-Reviewed Original Research
1996
Immortalized rabbit cortical collecting duct cells express AT1 angiotensin II receptors
Burns K, Regnier L, Roczniak A, Hebert R. Immortalized rabbit cortical collecting duct cells express AT1 angiotensin II receptors. American Journal Of Physiology 1996, 271: f1147-f1157. PMID: 8997388, DOI: 10.1152/ajprenal.1996.271.6.f1147.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsMeSH KeywordsAngiotensin IIAnimalsAntigens, Polyomavirus TransformingArginine VasopressinBiological TransportCell Line, TransformedCyclic AMPFemaleFluorescent Antibody TechniqueHydrolysisKidney CortexKidney Tubules, CollectingMicroscopy, Electron, ScanningPhosphatidylinositolsRabbitsReceptors, AngiotensinSimian virus 40TransfectionConceptsCortical collecting ductAng IIArginine vasopressinAT1 receptorAntibodies to smooth muscle myosinInhibit AVP-stimulated cAMP productionStimulate adenosine 3',5'-cyclic monophosphateAVP-stimulated cAMP productionEpithelial cell marker cytokeratinRabbit cortical collecting ductTransfected cellsEffects of Ang IITransepithelial short-circuit currentAT1 receptor mRNAStudy angiotensin IIAlpha-intercalated cellsAdenosine 3',5'-cyclic monophosphateAng II receptorsStimulation of phosphoinositide turnoverIncreased phosphoinositide hydrolysisInhibition of cAMPPeanut lectin agglutininRadioligand binding assaysTamm-Horsfall proteinSmooth muscle myosinNitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule
Roczniak A, Burns K. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule. American Journal Of Physiology 1996, 270: f106-f115. PMID: 8769828, DOI: 10.1152/ajprenal.1996.270.1.f106.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsMeSH KeywordsAnimalsBiological TransportCarrier ProteinsCells, CulturedCyclic AMP-Dependent Protein KinasesCyclic GMPEnzyme ActivationFemaleGuanylate CyclaseKidney Tubules, ProximalNitric OxideNitroprussidePenicillamineRabbitsS-Nitroso-N-AcetylpenicillamineSodiumSodium-Hydrogen ExchangersSodium-Phosphate Cotransporter ProteinsSymportersConceptsS-nitroso-N-acetylpenicillamineProximal tubule cellsRabbit proximal tubuleSoluble guanylate cyclaseProtein kinase AProximal tubulesSodium nitroprussideNa+/H+ exchangeTubule cellsGuanylate cyclaseNitric oxidePrimary cultures of proximal tubule cellsAmiloride-sensitive 22Na+ uptakeNa+ transportInhibitor of soluble guanylate cyclaseFractional excretion of lithiumRabbit proximal tubule cellsApical Na+/H+ exchangerGuanosine 3',5'-cyclic monophosphateStable end-products of NOEnd-products of NORegulating sodium transportNO stimulates soluble guanylate cyclaseEffects of NO donorsDose-dependent increase