James E. Rothman, newly appointed as a Sterling Professor of Cell Biology, is one of the world's most distinguished biochemists and cell biologists. For his work on how molecular messages are transmitted inside and outside of human cells, he was awarded a Nobel Prize in 2013.
A Sterling Professorship is one of the university’s highest faculty honors.
Rothman helped reveal the mechanism that allows cellular compartments called vesicles to transmit information both in the interior of the cell and to the surrounding environment. The fusion of vesicles and cellular membranes, a process called exocytosis, is basic to life and occurs in organisms as diverse as yeast and humans. Exocytosis underlies physiological functions ranging from the secretion of insulin to the regulation of the brain neurotransmitters responsible for movement, perception, memory, and mood.
Rothman’s current research concerns the biophysics of membrane fusion and its regulation in exocytosis; the dynamics of the Golgi apparatus at super-resolution; and the use of bio-inspired design in nanotechnology.
After graduating from Yale College with a degree in physics, Rothman earned a Ph.D. in biological chemistry from Harvard Medical School. He conducted postdoctoral research at the Massachusetts Institute of Technology before moving to the Stanford School of Medicine as an assistant professor. He continued his research at Princeton University, where he became the founding chair of the Department of Cellular Biochemistry and Biophysics at Memorial Sloan-Kettering Cancer Center and vice chair of the Sloan-Kettering Institute. Prior to coming to Yale in 2008, Rothman served on the faculty of Columbia University’s College of Physicians and Surgeons, where he was a professor in the Department of Physiology and Biophysics, the Clyde and Helen Wu Professor of Chemical Biology, and director of the Columbia Genome Center.
Rothman serves as chair of the Yale School of Medicine’s Department of Cell Biology and as director of the Nanobiology Institute on Yale’s West Campus.
He has received numerous awards and honors in recognition of his work on vesicle trafficking and membrane fusion, including the King Faisal International Prize for Science, the Gairdner Foundation International Award, the Lounsbery Award of the National Academy of Sciences, the Heineken Foundation Prize of the Netherlands Academy of Sciences, the Louisa Gross Horwitz Prize of Columbia University, the Lasker Basic Science Award, the Kavli Prize in Neuroscience, the Massry Prize, and the E.B. Wilson Medal. He is a member of the National Academy of Sciences and its Institute of Medicine, and is a fellow of the American Academy of Arts and Sciences.