2025
Three-Part Random Effect Models for Longitudinal Skewed Survey Data With “Not Applicable” Responses
Buta E, Simon P, Gueorguieva R. Three-Part Random Effect Models for Longitudinal Skewed Survey Data With “Not Applicable” Responses. Journal Of Educational And Behavioral Statistics 2025 DOI: 10.3102/10769986251318028.Peer-Reviewed Original Research
2024
Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures
Ouyang Y, Taljaard M, Forbes A, Li F. Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures. Statistical Methods In Medical Research 2024, 33: 1497-1516. PMID: 38807552, PMCID: PMC11499024, DOI: 10.1177/09622802241248382.Peer-Reviewed Original ResearchRandom effects structureVariance estimationComplex correlation structureRobust variance estimationFixed effects parametersDegrees of freedom correctionCluster randomized trialEstimates of standard errorsCorrelation structureRandom effectsStepped-wedge cluster randomized trialComprehensive simulation studyLinear mixed modelsStatistical inferenceRandom intercept modelSimulation studyMixed modelsMisspecificationValidity of inferencesRandom interceptContinuous outcomesEstimationComputational challengesIntercept modelStandard errorInterviewer biases in medical survey data: The example of blood pressure measurements
Geldsetzer P, Chang A, Meijer E, Sudharsanan N, Charu V, Kramlinger P, Haarburger R. Interviewer biases in medical survey data: The example of blood pressure measurements. PNAS Nexus 2024, 3: pgae109. PMID: 38525305, PMCID: PMC10959064, DOI: 10.1093/pnasnexus/pgae109.Peer-Reviewed Original ResearchBlood pressure measurementsHealth SurveyGlobal health indicatorsMiddle-income countriesInterviewer effectsHypertension prevalenceBlood pressureHealth agenciesLinear mixed modelsHealth indicatorsPhysical measurementsPrevalence estimatesSystolic blood pressurePressure measurementsGlobal SouthHealthInterviewsSubdistrict levelIndividual factorsSurvey dataMedical survey dataInterview techniquesMixed modelsRandom effectsProportion of variation
2023
Temperature variability and birthweight: Epidemiological evidence from Africa
Wang P, O'Donnell K, Warren J, Dubrow R, Chen K. Temperature variability and birthweight: Epidemiological evidence from Africa. Environment International 2023, 173: 107792. PMID: 36841185, DOI: 10.1016/j.envint.2023.107792.Peer-Reviewed Original Research
2022
Assessing Exposure-Time Treatment Effect Heterogeneity in Stepped-Wedge Cluster Randomized Trials
Maleyeff L, Li F, Haneuse S, Wang R. Assessing Exposure-Time Treatment Effect Heterogeneity in Stepped-Wedge Cluster Randomized Trials. Biometrics 2022, 79: 2551-2564. PMID: 36416302, PMCID: PMC10203056, DOI: 10.1111/biom.13803.Peer-Reviewed Original ResearchConceptsTreatment effect heterogeneityEffect heterogeneityParameter increasesTreatment effect parametersParametric functional formModel choicePermutation testModel formulationSimulation studyPrecise averageNew model formulationFunctional formEffect parametersRandom effectsTreatment effect estimatesCategorical termsVariance componentsModels for Zero-Inflated and Overdispersed Correlated Count Data: An Application to Cigarette Use
Pittman B, Buta E, Garrison K, Gueorguieva R. Models for Zero-Inflated and Overdispersed Correlated Count Data: An Application to Cigarette Use. Nicotine & Tobacco Research 2022, 25: 996-1003. PMID: 36318799, PMCID: PMC10077942, DOI: 10.1093/ntr/ntac253.Peer-Reviewed Original ResearchConceptsCorrelated count dataCount outcomesCount dataSubject-specific interpretationZero-InflatedIncorrect statistical inferenceStatistical inferenceCorrelated countsPoisson distributionOverdispersionModel assumptionsPoisson modelRandom effectsHurdle Poisson modelProper modelNegative binomial modelBinomial modelSuch dataAppropriate modelBest fitLarge varianceTobacco researchSuch outcomesModel fitTraining app
2021
Using Geriatric Assessment to Guide Conversations Regarding Comorbidities Among Older Patients With Advanced Cancer
Kleckner A, Wells M, Kehoe L, Gilmore N, Xu H, Magnuson A, Dunne R, Jensen-Battaglia M, Mohamed M, O'Rourke M, Vogelzang N, Dib E, Peppone L, Mohile S. Using Geriatric Assessment to Guide Conversations Regarding Comorbidities Among Older Patients With Advanced Cancer. JCO Oncology Practice 2021, 18: e9-e19. PMID: 34228510, PMCID: PMC8758128, DOI: 10.1200/op.21.00196.Peer-Reviewed Original ResearchConceptsIntervention armAdvanced cancerCluster randomized trialOlder patientsTreatment planningComorbidity QuestionnaireUsual carePractice sitesGA summaryClinical encountersLinear mixed modelsSecondary analysisOncology practiceGA domainsEligible patientsInterventionGuided conversationsComorbiditiesOncologistsTreatment outcomesMixed modelsPatientsComorbid concernsCancerRandom effects
2020
Two‐part models for repeatedly measured ordinal data with “don't know” category
Gueorguieva R, Buta E, Morean M, Krishnan‐Sarin S. Two‐part models for repeatedly measured ordinal data with “don't know” category. Statistics In Medicine 2020, 39: 4574-4592. PMID: 32909252, PMCID: PMC8025667, DOI: 10.1002/sim.8739.Peer-Reviewed Original ResearchConceptsAdaptive Gaussian quadratureCorrelated random effectsSAS PROC NLMIXEDOrdinal dataMaximum likelihood estimationTerms of biasStatistical dependenceNominal modelGaussian quadraturePROC NLMIXEDLikelihood estimationPartial orderingEstimation algorithmTwo-part modelModel formulationSimulation studyRandom effectsPredictor effectsSubmodelsOrdinal natureFormulationNLMIXEDQuadratureModelOrderingRelative Efficiency of Using Summary Versus Individual Data in Random-Effects Meta-Analysis
Chen D, Liu D, Min X, Zhang H. Relative Efficiency of Using Summary Versus Individual Data in Random-Effects Meta-Analysis. Biometrics 2020, 76: 1319-1329. PMID: 32056197, PMCID: PMC7955582, DOI: 10.1111/biom.13238.Peer-Reviewed Original ResearchConceptsMaximum likelihood estimationSummary statisticsAsymptotic senseStatistical methodologyLikelihood estimationGaussian distributionInference settingHeterogeneity parametersRelative efficiencyRandom effectsSample sizeStatisticsInferenceData setsModelEfficient conclusionsEstimationIndividual participant dataAssumptionParametersEfficiency
2019
A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis
Noble S, Scheinost D, Constable RT. A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. NeuroImage 2019, 203: 116157. PMID: 31494250, PMCID: PMC6907736, DOI: 10.1016/j.neuroimage.2019.116157.Peer-Reviewed Original ResearchConceptsIntraclass correlation coefficientTest-retest reliabilityFunctional connectivitySystematic reviewShort test-retest intervalsTest-retest reliability studyIndividual edgesNarrative summaryTest-retest intervalSearch of ScopusMeta-analytic estimatesCortical edgeRandom effectsQualitative reviewNeuroscience toolsReviewActive recordingReview of factorsExpense of validitySubject dataStudyMaximum likelihood estimation of nonlinear mixed-effects models with crossed random effects by combining first-order conditional linearization and sequential quadratic programming
Fu L, Wang M, Wang Z, Song X, Tang S. Maximum likelihood estimation of nonlinear mixed-effects models with crossed random effects by combining first-order conditional linearization and sequential quadratic programming. International Journal Of Biomathematics 2019, 12: 1950040. DOI: 10.1142/s1793524519500402.Peer-Reviewed Original ResearchSequential quadratic programmingNLME modelsMaximum likelihood estimationNonlinear mixed effects modelsParameter estimationQuadratic programmingGeneral formulationLikelihood estimationRandom effectsStandard statistical packagesVariance-covariance matrixModel linearizationMethod convergesConditional expansionComputational algorithmComputational optimizationNormal assumptionNLME modelingError termSimulation studyLinearizationMixed effects modelsEstimationHigh accuracyAlgorithm
2018
Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials
Lehrer EJ, Peterson JL, Zaorsky NG, Brown PD, Sahgal A, Chiang VL, Chao ST, Sheehan JP, Trifiletti DM. Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials. International Journal Of Radiation Oncology • Biology • Physics 2018, 103: 618-630. PMID: 30395902, DOI: 10.1016/j.ijrobp.2018.10.038.Peer-Reviewed Original ResearchConceptsLarge brain metastasesMF-SRSSF-SRSMultifraction stereotactic radiosurgeryBrain metastasesRandom effects estimatesStereotactic radiosurgeryLocal controlMeta-analysisEffect estimatesRates of radionecrosisProspective clinical trialsPreferred Reporting ItemsRadionecrosis ratePostoperative settingTumor sizeInternational Meta-AnalysisEpidemiology guidelinesClinical trialsObservational studyRandom effectsTumor volumeSummary estimatesReporting ItemsMetastasisEstimating Causal Effects on Social Networks
Forastiere L, Mealli F, Wu A, Airoldi E. Estimating Causal Effects on Social Networks. 2018, 00: 60-69. DOI: 10.1109/dsaa.2018.00016.Peer-Reviewed Original ResearchPosterior distributionPropensity score estimationBayesian procedureObserved networkStructural assumptionsNeighborhood treatmentsGeneralized propensity scoreNeighborhood interferenceRandom effectsSpline regressionNeighbor treatmentsCausal estimandsCommunity detection algorithmsScore estimationConnected unitsEstimationModel feedbackAssumptionUnmeasured confounding variablesRegularized Latent Class Model for Joint Analysis of High-Dimensional Longitudinal Biomarkers and a Time-to-Event Outcome
Sun J, Herazo-Maya J, Molyneaux PL, Maher TM, Kaminski N, Zhao H. Regularized Latent Class Model for Joint Analysis of High-Dimensional Longitudinal Biomarkers and a Time-to-Event Outcome. Biometrics 2018, 75: 69-77. PMID: 30178494, DOI: 10.1111/biom.12964.Peer-Reviewed Original ResearchConceptsJoint latent class modelLongitudinal biomarkersExtensive simulation studyLatent class modelLongitudinal submodelJoint modeling methodSurvival submodelLikelihood approachSimulation studyClass modelEvent outcomesLatent classesModeling methodMembership modelRandom effectsModeling approachClassSubmodelsJoint analysisModelBootstrapUnique trajectoriesNovel biological insightsInferenceA maximum likelihood approach to power calculations for stepped wedge designs of binary outcomes
Zhou X, Liao X, Kunz LM, Normand ST, Wang M, Spiegelman D. A maximum likelihood approach to power calculations for stepped wedge designs of binary outcomes. Biostatistics 2018, 21: 102-121. PMID: 30084949, PMCID: PMC7410259, DOI: 10.1093/biostatistics/kxy031.Peer-Reviewed Original ResearchConceptsVariable cluster sizesMaximum likelihood approachLikelihood approachCluster sizeLeast squares approachStatistical theoryCluster random effectsBinary outcomesNumber of clustersNumerical methodParameter spaceRobustness of powerAsymptotic powerSquares approachIntra-cluster correlation coefficientRandom effectsParallel clusterLarge-scale intervention programmesPower calculationNew methodAvailable methodsWedge designSequential rolloutTheoryClusters
2017
Bayesian Joint Modelling of Longitudinal Data on Abstinence, Frequency and Intensity of Drinking in Alcoholism Trials
Buta E, O’Malley S, Gueorguieva R. Bayesian Joint Modelling of Longitudinal Data on Abstinence, Frequency and Intensity of Drinking in Alcoholism Trials. Journal Of The Royal Statistical Society Series A (Statistics In Society) 2017, 181: 869-888. PMID: 31123390, PMCID: PMC6527419, DOI: 10.1111/rssa.12334.Peer-Reviewed Original ResearchBayesian joint modellingParameter estimate biasStandard frequentist approachRandom effectsLog-normal modelJoint modelFrequentist approachBayesian approachMean squared errorJoint modellingEstimate biasIntensity of drinkingSimulation studyFrequency of drinkingSeparate modellingModellingLongitudinal outcomesClinical trialsSame subjectsSustained abstinenceModelLogistic partAbstinence
2016
On high-dimensional misspecified mixed model analysis in genome-wide association study
Jiang J, Li C, Paul D, Yang C, Zhao H. On high-dimensional misspecified mixed model analysis in genome-wide association study. The Annals Of Statistics 2016, 44: 2127-2160. DOI: 10.1214/15-aos1421.Peer-Reviewed Original ResearchREML estimatorsAsymptotic resultsAsymptotic conditional varianceReal data applicationRandom effectsMaximum likelihood estimatorExtensive simulation studyAsymptotic analysisConvergence rateLikelihood estimatorLinear mixed modelsEstimatorSimulation studyConvergenceData applicationsTrue varianceConditional varianceImportant genetic implicationsCertain limitsA meta-analysis of MSI frequency and race in colorectal cancer
Ashktorab H, Ahuja S, Kannan L, Llor X, Ellis NA, Xicola RM, Laiyemo AO, Carethers JM, Brim H, Nouraie M. A meta-analysis of MSI frequency and race in colorectal cancer. Oncotarget 2016, 7: 34546-34557. PMID: 27120810, PMCID: PMC5085175, DOI: 10.18632/oncotarget.8945.Peer-Reviewed Original ResearchConceptsColorectal cancerMSI frequencyMicrosatellite instabilityAfrican AmericansAssociation of raceSub-group analysisMeta-regression analysisAvailable race dataClinical factorsTumor locationHigh riskMSI ratesDifferent literature databasesLiterature databasesRacial disparitiesCancerCaucasiansHispanicsDifferent studiesCaucasian samplesRandom effectsUnivariate effectsHigh frequencyRace dataFactors Affecting Length of Postoperative Hospitalization for Pediatric Cardiac Operations in a Large North American Registry (1982–2007)
al-Haddad BJ, Menk JS, Kochilas L, Vinocur JM. Factors Affecting Length of Postoperative Hospitalization for Pediatric Cardiac Operations in a Large North American Registry (1982–2007). Pediatric Cardiology 2016, 37: 884-891. PMID: 26965705, PMCID: PMC5724563, DOI: 10.1007/s00246-016-1364-0.Peer-Reviewed Original ResearchConceptsPostoperative hospitalizationSurgical volumeAnnual surgical volumeHealthcare resource useLow-volume centersPediatric cardiac operationsFactors Affecting LengthCongenital heart diseaseNorth American RegistrySurgical treatmentEarly dischargeCardiac operationsPediatric hospitalizationsVolume centersHeart diseaseClinical significanceMerit further investigationSex-specific differencesHospitalizationEfficient careMajor causeRisk adjustmentOlder childrenTime interactionRandom effects
2015
A spatiotemporal quantile regression model for emergency department expenditures
Neelon B, Li F, Burgette LF, Neelon SE. A spatiotemporal quantile regression model for emergency department expenditures. Statistics In Medicine 2015, 34: 2559-2575. PMID: 25782041, DOI: 10.1002/sim.6480.Peer-Reviewed Original ResearchConceptsQuantile regression modelSmall area estimationAsymmetric Laplace distributionSpatiotemporal random effectsFull conditionalsRandom effectsBayesian modeling approachLaplace distributionAutoregressive priorsSampling schemeResponse distributionEmergency department expendituresSpatiotemporal smoothingModeling approach
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply