2025
Peroxiredoxin 6: A Regulatory Target in Cellular Senescence and Age-Related Diseases
Wang H, Zhao Y, Zhou F, Chen F, Chen T, Wang J, Liu H, Sun C, Zhou R, Hu W, Lu C. Peroxiredoxin 6: A Regulatory Target in Cellular Senescence and Age-Related Diseases. Antioxidants And Redox Signaling 2025 PMID: 40495793, DOI: 10.1089/ars.2024.0793.Peer-Reviewed Original ResearchAge-related diseasesAcidic calcium-independent phospholipase A2Cellular senescenceLysophosphatidylcholine acyltransferaseModulating cellular senescenceRegulation of redox homeostasisRegulation of cellular senescenceEnzymatic functionOxidative stressPeroxiredoxin familyPhospholipid homeostasisRegulatory targetsTreatment of age-related diseasesCalcium-independent phospholipase A2Redox homeostasisRegulatory mechanismsIntracellular regulationRedox balancePrdx6Peroxiredoxin 6Physiological functionsExpression antioxidant enzymesSenescenceSenescent cellsPeroxiredoxin
2024
Immunogenicity of ferroptosis in cancer: a matter of context?
Catanzaro E, Demuynck R, Naessens F, Galluzzi L, Krysko D. Immunogenicity of ferroptosis in cancer: a matter of context? Trends In Cancer 2024, 10: 407-416. PMID: 38368244, DOI: 10.1016/j.trecan.2024.01.013.Peer-Reviewed Original ResearchTumor-targeting immune responsesImmune responseCancer cellsKill malignant cellsAdaptive immune responsesInduction of ferroptosisImmunogenicity of ferroptosisAnticancer immunityMicroenvironmental defectMalignant cellsImmune cellsPlasma membrane breakdownFerroptosis inducersNecrotic formCell deathFerroptosisImbalance of cellular redox homeostasisLipid peroxidationCellsMembrane breakdownCellular redox homeostasisRedox homeostasisContext-dependent effectsImmunogenicityAdjuvanticity
2023
Emerging roles of low-molecular-weight thiols at the host–microbe interface
Dumitrescu D, Hatzios S. Emerging roles of low-molecular-weight thiols at the host–microbe interface. Current Opinion In Chemical Biology 2023, 75: 102322. PMID: 37201290, PMCID: PMC10524283, DOI: 10.1016/j.cbpa.2023.102322.Peer-Reviewed Original ResearchConceptsHost-microbe interfaceLMW thiolsWeight thiolsCellular redox homeostasisRedox-active metabolitesCellular physiologyVirulence regulationRedox homeostasisHost physiologyAbundant classMicrobial metabolismHost cellsIntercellular interactionsForms of lifeInfected cellsSmall moleculesPhysiologyCellsComputational approachThiolsHomeostasisRegulationRoleMetabolismDiscoveryFunctions of Peroxiredoxins and Their Roles in Autoimmune Diseases
Zhou F, Chen F, Ouyang Z, Zhu R, Zhou R, Hu W, Lu C. Functions of Peroxiredoxins and Their Roles in Autoimmune Diseases. Antioxidants And Redox Signaling 2023, 40: 329-344. PMID: 36738225, DOI: 10.1089/ars.2022.0139.Peer-Reviewed Original ResearchFunction of peroxiredoxinsAutoimmune diseasesCellular redox signalingOxidative stressRedox signalingRedox homeostasisEssential regulatorExcess ROSPeroxiredoxinsBiological processesReactive oxygen species generationProduction of ROSPhysiological roleNew therapeutic targetsOxygen species generationAntioxidant enzymesPotential targetPathophysiological rolePathological situationsEffective treatmentTherapeutic targetSpecies generationDiseaseROSRecent studies
2022
A microbial transporter of the dietary antioxidant ergothioneine
Dumitrescu D, Gordon E, Kovalyova Y, Seminara A, Duncan-Lowey B, Forster E, Zhou W, Booth C, Shen A, Kranzusch P, Hatzios S. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022, 185: 4526-4540.e18. PMID: 36347253, PMCID: PMC9691600, DOI: 10.1016/j.cell.2022.10.008.Peer-Reviewed Original ResearchConceptsInter-kingdom competitionHost-associated microbesIntracellular redox homeostasisGastric pathogen Helicobacter pyloriPathogen Helicobacter pyloriRedox regulationSmall molecule antioxidantsRedox homeostasisBiosynthetic pathwayColonization advantageUnappreciated mechanismLMW thiolsHost environmentHuman faecal bacteriaWeight thiolsCertain microorganismsAntioxidant ergothioneineGastrointestinal microbesMetabolite trimethylamine N-oxideMicrobesMillimolar levelsHuman tissuesErgothioneineTrimethylamine N-oxideFecal bacteriaRedox regulation by TXNRD3 during epididymal maturation underlies capacitation-associated mitochondrial activity and sperm motility in mice
Wang H, Dou Q, Jeong KJ, Choi J, Gladyshev VN, Chung JJ. Redox regulation by TXNRD3 during epididymal maturation underlies capacitation-associated mitochondrial activity and sperm motility in mice. Journal Of Biological Chemistry 2022, 298: 102077. PMID: 35643315, PMCID: PMC9218152, DOI: 10.1016/j.jbc.2022.102077.Peer-Reviewed Original ResearchConceptsRedox regulationRedox homeostasisMolecular mechanismsSperm maturationMitochondrial sheath formationCell imaging analysisThioredoxin glutathione reductaseSperm developmentMammalian spermatozoaEpididymal transitMitochondrial ultrastructureMitochondrial activityRedox statusMale fertilityCapacitationHomeostasisMaturationRegulationMotilityFamily membersFertilizationSperm morphologySperm motilityMitochondriaBioenergetics
2021
Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biology 2021, 49: 102212. PMID: 34923300, PMCID: PMC8688892, DOI: 10.1016/j.redox.2021.102212.Peer-Reviewed Original ResearchConceptsSenescence-associated secretory phenotypePeroxiredoxin 6Senescent cellsIrreversible cell cycle arrestProtein secretory pathwayStress-induced cell deathProteome-level changesProteome-wide analysisCyclin-dependent kinasesProtein sulfhydryl oxidationOxidative stressPeroxiredoxin family membersExtracellular matrix proteinsComplex stress responseHTERT-RPE-1Cell cycle arrestSecretory pathwayRadiation-induced senescenceRedox homeostasisCellular senescenceDependent kinasesSecretome analysisStress responseSenescent phenotypeAntioxidant proteins
2020
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System
Hrelia P, Sita G, Ziche M, Ristori E, Marino A, Cordaro M, Molteni R, Spero V, Malaguti M, Morroni F, Hrelia S. Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxidative Medicine And Cellular Longevity 2020, 2020: 8363245. PMID: 32832006, PMCID: PMC7422410, DOI: 10.1155/2020/8363245.Peer-Reviewed Original ResearchConceptsNeurodegenerative diseasesRisk factorsCellular redox systemsRedox homeostasisMolecular mechanismsMultiple risk factorsPivotal risk factorComplex multifactorial natureDisease mechanismsVascular injuryChronic neurodegenerationPreventive strategiesCommon mechanismOxidative stressMultifactorial natureDiseaseProtective strategiesHuman brainRedox systemProgressionComplex networksMechanismHomeostasisEarly stagesInflammation
2019
Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology
Vajrychova M, Salovska B, Pimkova K, Fabrik I, Tambor V, Kondelova A, Bartek J, Hodny Z. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology. Redox Biology 2019, 24: 101227. PMID: 31154163, PMCID: PMC6545335, DOI: 10.1016/j.redox.2019.101227.Peer-Reviewed Original ResearchConceptsCellular proteomeCysteine oxidationProtein thiol residuesRedox statusCellular protein expressionRedox changesCellular redox statusOrganismal physiologyVersatile experimental approachProtein functionCellular proteinsTranscription factorsRedox homeostasisReporter ion quantificationOxidation processMetabolic labelingFunctional analysisProtein turnoverNew analytical methodThiol residuesIon quantificationRedox alterationsRedox modulatingBiological relevanceRedox imbalance
2018
Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
Lian G, Gnanaprakasam JR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TW, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife 2018, 7: e36158. PMID: 30198844, PMCID: PMC6152796, DOI: 10.7554/elife.36158.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationDimethyl FumarateGlutamate-Cysteine LigaseGlutamineGlutathioneGlutathione DisulfideHomeostasisLymphocyte ActivationMice, Inbred C57BLOxidation-ReductionOxidative StressReactive Oxygen SpeciesReceptors, Antigen, T-CellT-LymphocytesT-Lymphocytes, RegulatoryTh17 CellsConceptsCell fateDe novo synthesisNovo synthesisCell differentiationT cell differentiationMurine T cell differentiationT cell fateGlutamate-cysteine ligaseLineage choiceRedox demandsGlutathione de novo synthesisRecycling pathwayInhibition of GSHRedox homeostasisGSH biosynthesisGlutamine catabolismRedox balanceModifier subunitEssential precursorIntracellular GSHEssential roleGlutathione disulfideDifferentiationGSH contentGSHB-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies
Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Müschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 2018, 173: 470-484.e18. PMID: 29551267, PMCID: PMC6284818, DOI: 10.1016/j.cell.2018.02.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCarbonCell Line, TumorCell SurvivalGlucoseGlucosephosphate DehydrogenaseGlycolysisHumansIkaros Transcription FactorMiceMice, Inbred C57BLMice, Inbred NODOxidative StressPAX5 Transcription FactorPentose Phosphate PathwayPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Phosphatase 2Proto-Oncogene Proteins c-bcl-2Transcription, GeneticConceptsPentose phosphate pathwayCarbon utilizationSerine/threonine protein phosphatase 2AB-cell transcription factor PAX5Transcription factor Pax5Favor of glycolysisSmall molecule inhibitionPhosphatase 2ATranscriptional repressionRedox homeostasisOncogenic transformationTumor suppressorMolecule inhibitionPP2AGenetic studiesPhosphate pathwayB cell activationEssential roleB-cell malignanciesCell malignanciesB cellsAntioxidant protectionOxidative stressB-cell tumorsCell activation
2016
PP2A Balances Glucose Metabolism and Foxo Activation to Maintain Cellular Redox Homeostasis in Acute Lymphoblastic Leukemia
Xiao G, Chen Z, Daniel B, Chan L, Geng H, Jiang X, Müschen M. PP2A Balances Glucose Metabolism and Foxo Activation to Maintain Cellular Redox Homeostasis in Acute Lymphoblastic Leukemia. Blood 2016, 128: 1056. DOI: 10.1182/blood.v128.22.1056.1056.Peer-Reviewed Original ResearchLineage-specific rolesPro-survival roleLB-100PP2A subunitsRedox homeostasisH2AX phosphorylationUnexpected rolePI3K-AktFunction of PP2AProtein phosphatase 2ACellular redox homeostasisSer/ThrCatalytic subunit CAnti-oxidant gene expressionS6 ribosomal proteinHigh glycolytic fluxRescue effectGrowth competition assaysLeukemia cellsPentose phosphate pathway fluxHigher reactive oxygen species (ROS) levelsReduced cell growthPP2A functionSmall molecule inhibitorsFOXO factorsEnhanced hypoxic tolerance by Seabuckthorn is due to upregulation of HIF-1α and attenuation of ER stress
Jain K, Suryakumar G, Prasad R, Ganju L, Singh S. Enhanced hypoxic tolerance by Seabuckthorn is due to upregulation of HIF-1α and attenuation of ER stress. Journal Of Applied Biomedicine 2016, 14: 71-83. DOI: 10.1016/j.jab.2015.10.001.Peer-Reviewed Original ResearchHIF-1αHypoxic toleranceER stressAnti-inflammatory effectsPro-survival effectsFree radical productionCardioprotective actionCardiac damageHO-1NF-κBHerbal supplementsKey adaptive responseOxidative stressTwo-fold increaseHsp70 levelsAntioxidant potentialProtein carbonylationRadical productionHypoxiaSignificant declineSignaling cascadesAdaptive responseCross talkNovel insightsRedox homeostasis
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply