2023
Role of the immune-kynurenine pathway in treatment-resistant schizophrenia
Chen W, Tian Y, Gou M, Wang L, Tong J, Zhou Y, Feng W, Li Y, Chen S, Liu Y, Wang Z, Pan S, Zhang P, Huang J, Yang X, Li C, Tian L, Hong L, Tan Y. Role of the immune-kynurenine pathway in treatment-resistant schizophrenia. Progress In Neuro-Psychopharmacology And Biological Psychiatry 2023, 130: 110926. PMID: 38147973, DOI: 10.1016/j.pnpbp.2023.110926.Peer-Reviewed Original ResearchConceptsImmune-inflammatory response systemTreatment-resistant schizophreniaQUIN/KYNA ratioNon-TRS patientsHealthy controlsKynurenine pathwayKP metabolismKP activationKynurenic acidQuinolinic acidInflammation-related effectsPeripheral immune responseAnti-inflammatory cytokinesPro-inflammatory cytokinesBinary logistic regression analysisPathophysiology of schizophreniaLogistic regression analysisAge of onsetLower kynurenineKP metabolitesKYNA levelsIllness onsetPlasma levelsRisk factorsNMDA receptors
2022
Association of Soluble ST2 With Functional Outcome, Perihematomal Edema, and Immune Response After Intraparenchymal Hemorrhage
Bevers M, Booraem C, Li K, Sreekrishnan A, Sastre C, Falcone G, Sheth K, Sansing L, Kimberly W. Association of Soluble ST2 With Functional Outcome, Perihematomal Edema, and Immune Response After Intraparenchymal Hemorrhage. Neurology 2022, 100: e1329-e1338. PMID: 36549913, PMCID: PMC10065211, DOI: 10.1212/wnl.0000000000206764.Peer-Reviewed Original ResearchConceptsSoluble ST2Deep intraparenchymal hemorrhageIntraparenchymal hemorrhagePerihematomal edemaImmune responseHematoma volumePoor outcomeFunctional outcomeMedian admission Glasgow Coma Scale scoreScale scoreAdmission Glasgow Coma Scale scorePeripheral innate immune responseModified Rankin Scale scoreGlasgow Coma Scale scoreHours of ictusPeripheral immune responseSecondary brain injuryRankin Scale scoreInnate immune cellsImmune cell populationsIntracerebral Hemorrhage ScoreSerial CT scansInnate immune responseHuman brain tissueSST2 levels
2020
LTBK-01. INO-5401 AND INO-9012 DELIVERED INTRAMUSCULARLY (IM) WITH ELECTROPORATION (EP) IN COMBINATION WITH CEMIPLIMAB (REGN2810) IN NEWLY DIAGNOSED GLIOBLASTOMA
Reardon D, Brem S, Desai A, Bagley S, Kurz S, De La Fuente M, Nagpal S, Welch M, Hormigo A, Forsyth P, Mandell J, Khagi S, Aiken R, Walbert T, Lieberman F, Portnow J, Batiste J, Carroll N, Sylvester A, Campbell P, Lowy I, Dolgoter A, Boyer J, Kraynyak K, Morrow M, McMullan T, Weiner D, Skolnik J. LTBK-01. INO-5401 AND INO-9012 DELIVERED INTRAMUSCULARLY (IM) WITH ELECTROPORATION (EP) IN COMBINATION WITH CEMIPLIMAB (REGN2810) IN NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology 2020, 22: ii237-ii237. PMCID: PMC7678727, DOI: 10.1093/neuonc/noaa215.988.Peer-Reviewed Original ResearchCohort AMedian OSAntigen-specific T cell responsesImmune responseRobust systemic immune responsesInterferon-gamma ELISPOTDiagnosed GBM patientsT cell responsesEncoding tumor antigensAdverse event profileNewly diagnosed glioblastomaPeripheral immune responseSystemic immune responsesCheckpoint inhibitionPD-1Diagnosed GBMDiagnosed glioblastomaOverall survivalCohort B.Tumor antigensCD8+T cellsMedian agePrimary endpointCohort BEvent profile
2019
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
Patsopoulos N, Baranzini S, Santaniello A, Shoostari P, Cotsapas C, Wong G, Beecham A, James T, Replogle J, Vlachos I, McCabe C, Pers T, Brandes A, White C, Keenan B, Cimpean M, Winn P, Panteliadis I, Robbins A, Andlauer T, Zarzycki O, Dubois B, Goris A, Søndergaard H, Sellebjerg F, Sorensen P, Ullum H, Thørner L, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusic S, Berthele A, Pongratz V, Buck D, Gasperi C, Graetz C, Grummel V, Hemmer B, Hoshi M, Knier B, Korn T, Lill C, Luessi F, Mühlau M, Zipp F, Dardiotis E, Agliardi C, Amoroso A, Barizzone N, Benedetti M, Bernardinelli L, Cavalla P, Clarelli F, Comi G, Cusi D, Esposito F, Ferrè L, Galimberti D, Guaschino C, Leone M, Martinelli V, Moiola L, Salvetti M, Sorosina M, Vecchio D, Zauli A, Santoro S, Mancini N, Zuccalà M, Mescheriakova J, van Duijn C, Bos S, Celius E, Spurkland A, Comabella M, Montalban X, Alfredsson L, Bomfim I, Gomez-Cabrero D, Hillert J, Jagodic M, Lindén M, Piehl F, Jelčić I, Martin R, Sospedra M, Baker A, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Molyneux P, Neville M, Thorpe J, Bradshaw E, Caillier S, Calabresi P, Cree B, Cross A, Davis M, de Bakker P, Delgado S, Dembele M, Edwards K, Fitzgerald K, Frohlich I, Gourraud P, Haines J, Hakonarson H, Kimbrough D, Isobe N, Konidari I, Lathi E, Lee M, Li T, An D, Zimmer A, Madireddy L, Manrique C, Mitrovic M, Olah M, Patrick E, Pericak-Vance M, Piccio L, Schaefer C, Weiner H, Lage K, Compston A, Hafler D, Harbo H, Hauser S, Stewart G, D’Alfonso S, Hadjigeorgiou G, Taylor B, Barcellos L, Booth D, Hintzen R, Kockum I, Martinelli-Boneschi F, McCauley J, Oksenberg J, Oturai A, Sawcer S, Ivinson A, Olsson T, De Jager P. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365 PMID: 31604244, PMCID: PMC7241648, DOI: 10.1126/science.aav7188.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesCell Cycle ProteinsChromosome MappingChromosomes, Human, XGene FrequencyGenetic LociGenome-Wide Association StudyGenomicsGTPase-Activating ProteinsHumansInheritance PatternsMajor Histocompatibility ComplexMicrogliaMultiple SclerosisPolymorphism, Single NucleotideQuantitative Trait LociRNA-SeqTranscriptomeConceptsMajor histocompatibility complexMultiple sclerosisImmune cellsBrain-resident immune cellsPeripheral immune cellsPeripheral immune responseCentral nervous systemExtended major histocompatibility complexAutoimmune processControl subjectsHuman microgliaImmune responseNervous systemImmune systemHistocompatibility complexPutative susceptibility genesMicrogliaX variantGenetic architectureSusceptibility genesGenomic mapGenetic dataExpression profilesM geneSusceptibility variants
2017
In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence
Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, Huang Y, O'Connor KC, Carson RE, O'Malley SS, Cosgrove KP. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Molecular Psychiatry 2017, 22: 1759-1766. PMID: 28242869, PMCID: PMC5573660, DOI: 10.1038/mp.2017.10.Peer-Reviewed Original ResearchMeSH KeywordsAcetamidesAdultAlcoholismBrainBrain MappingCarbon RadioisotopesCells, CulturedCytokinesFemaleHumansInflammationLipopolysaccharidesMaleMicrogliaMonocytesNeuroimagingPolymorphism, Single NucleotidePositron-Emission TomographyPyridinesRadiopharmaceuticalsReceptors, GABASeverity of Illness IndexConceptsAlcohol-dependent subjectsAlcohol dependenceTSPO levelsTranslocator proteinProinflammatory cytokine interleukin-6Peripheral immune profilePeripheral immune responseCytokine interleukin-6Absence of lipopolysaccharideSubset of subjectsAlcohol use disorderPositron emission tomographyAlcohol-dependent individualsMicroglial activationImmune profileNeuroimmune systemCytokine expressionBrain levelsProinflammatory responseInterleukin-6Healthy controlsInterleukin-8Immune responseLast drinkUse disorders
2014
774P Stride, a Randomized, Phase 2, Open-Label Study of Sipuleucel-T with Concurrent Vs Sequential Enzalutamide in Metastatic Castration-Resistant Prostate Cancer (Mcrpc)
Petrylak D, Quinn D, Dreicer R, Antonarakis E, Shore N, Corman J, Concepcion R, Pieczonka C, Stubbs A, Sheikh N, Devries T, Sandler A, Drake C. 774P Stride, a Randomized, Phase 2, Open-Label Study of Sipuleucel-T with Concurrent Vs Sequential Enzalutamide in Metastatic Castration-Resistant Prostate Cancer (Mcrpc). Annals Of Oncology 2014, 25: iv266. DOI: 10.1093/annonc/mdu336.22.Peer-Reviewed Original ResearchAdverse eventsArm ABristol-Myers SquibbArm B.Immune responsePeripheral T-cell immune responseMetastatic castration-resistant prostate cancerCastration-resistant prostate cancerElevated serum PSA levelsT cell immune responsesAutologous cellular immunotherapyTreatment of mCRPCTreatment-related gradePeripheral immune responsePhase 2 studySerum PSA levelsAndrogen receptor inhibitorMultiple treatment optionsCell immune responsesSecondary endpointsPrimary endpointPSA levelsInfusion 2Cellular immunotherapyInfusion 1
2013
Immune response with sipuleucel-T in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): Phase II ProACT study.
Gardner T, Petrylak D, Corman J, Hall S, Weinstein R, Keyser R, Sims R, Sanders A, Sheikh N, Higano C. Immune response with sipuleucel-T in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): Phase II ProACT study. Journal Of Clinical Oncology 2013, 31: 148-148. DOI: 10.1200/jco.2013.31.6_suppl.148.Peer-Reviewed Original ResearchMetastatic castration-resistant prostate cancerSymptomatic metastatic castration-resistant prostate cancerMemory B cellsImmune responseOverall survivalB cellsOngoing phase 2 studyCastration-resistant prostate cancerAutologous cellular immunotherapyPeripheral immune responsePhase 2 studyProlongs overall survivalST infusionCellular immunotherapySerum antiMemory phenotypeSipuleucelPA2024Prostate cancerCSF titersActivation phenotypeAnti-GMGM-CSFFlow cytometryMature phenotype
2010
Citalopram reduces endotoxin-induced fatigue
Hannestad J, DellaGioia N, Ortiz N, Pittman B, Bhagwagar Z. Citalopram reduces endotoxin-induced fatigue. Brain Behavior And Immunity 2010, 25: 256-259. PMID: 20955776, PMCID: PMC3025065, DOI: 10.1016/j.bbi.2010.10.013.Peer-Reviewed Original ResearchConceptsTumor necrosis factorMADRS total scoreDepressive-like symptomsInterleukin-6Serum levelsImmune responseMontgomery-Åsberg Depression Rating ScaleTotal scorePeripheral immune responseLow-dose endotoxinCross-over studyVisual analog scaleDepression Rating ScaleImmune system activationInnate immune responseInnate immune systemEffect sizeTrait Anxiety InventoryModerate effect sizeAnalog scaleInflammatory cytokinesEndotoxin administrationPreventive treatmentNecrosis factorHealthy subjects
2000
The liver as a site of T‐cell apoptosis: graveyard, or killing field?
Crispe I, Dao T, Klugewitz K, Mehal W, Metz D. The liver as a site of T‐cell apoptosis: graveyard, or killing field? Immunological Reviews 2000, 174: 47-62. PMID: 10807506, DOI: 10.1034/j.1600-0528.2002.017412.x.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsAntigensApoptosisCD8-Positive T-LymphocytesCell AdhesionEndothelium, Vascularfas ReceptorHepatitis CHumansImmune ToleranceImmunophenotypingIntestinal AbsorptionKiller Cells, NaturalKupffer CellsLiverLiver CirculationLiver TransplantationLymphocyte ActivationLymphocyte SubsetsMiceMice, TransgenicModels, ImmunologicalPortal VeinConceptsT cellsNatural killerT cell trappingNK T cellsPeripheral immune responsePortal vein infusionApoptotic T cellsT cell apoptosisNormal mouse liverPhenomenon of toleranceApoptotic CD8Liver allograftsOral toleranceHepatitis C.Lymphocyte populationsAntigenic cellsImmune responseLiver pathogensVein infusionClearance phaseLiver resultsLiverDirect perfusionMouse liverCell populations
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply