2017
Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH
Rao JU, Coman D, Walsh JJ, Ali MM, Huang Y, Hyder F. Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Scientific Reports 2017, 7: 7865. PMID: 28801587, PMCID: PMC5554228, DOI: 10.1038/s41598-017-07609-7.Peer-Reviewed Original ResearchConceptsU251 tumorsTumor microenvironmentT2-weighted MRITherapeutic responseUntreated ratsTumor volumeRat brainTumor growthTherapeutic influenceGlioma growthPeritumoral regionRatsApoptosis inductionTumorsGliomasTumor corePhysiological readoutsExtracellular pHAcidic pHeTumor boundariesProliferationMicroenvironment
2014
Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A
Gupta R, Dong Y, Solomon PD, Wettersten HI, Cheng CJ, Min JN, Henson J, Dogra SK, Hwang SH, Hammock BD, Zhu LJ, Reddel RR, Saltzman WM, Weiss RH, Chang S, Green MR, Wajapeyee N. Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: e3062-e3071. PMID: 25024194, PMCID: PMC4121806, DOI: 10.1073/pnas.1411370111.Peer-Reviewed Original ResearchConceptsP53-mediated transcriptional activationCyclin-dependent kinase inhibitor 1AMutant p53Telomerase inhibitionTumor suppressor p53Transcriptional activationSynergistic tumor suppressionTelomere dysfunctionCheckpoint proteinsP53 upregulated modulatorTumor suppressionCDK inhibitorsSuppressor p53Inhibitor 1AP53 activityTelomeraseHuman cancersCancer cell linesApoptosis inductionPharmacological inhibitionApoptosisCell linesPharmacological restorationP21Growth inhibition
2013
Inhibition of Signal Transducer and Activator of Transcription 3 and Cyclooxygenase-2 Is Involved in Radiosensitization of Cepharanthine in HeLa Cells
Fang Z, Li Y, Chen Z, Wang J, Zhu L. Inhibition of Signal Transducer and Activator of Transcription 3 and Cyclooxygenase-2 Is Involved in Radiosensitization of Cepharanthine in HeLa Cells. International Journal Of Gynecological Cancer 2013, 23: 608-614. PMID: 23466568, DOI: 10.1097/igc.0b013e31828a05fd.Peer-Reviewed Original ResearchConceptsHeLa cellsSignal transducerTranscription 3C-MycSTAT3 target genesCell cycle regulators c-MycBcl-2Antiapoptotic Bcl-2Target genesWestern blot analysisHeLa cell lineApoptosis inductionBlot analysisNude mouse xenograftsCell linesReduced expressionSTAT3Apoptosis analysisMouse xenograftsSignificant radiosensitizationIR treatmentClonogenic assayActivatorCellsCytotoxic effects
2009
S1272 Differential Regulation of Apoptosis Induction By Plantago Ovata Husk in Colorectal Cancer Cells. Induction of the TNF-Alpha Apoptosis Cascade in Metastatic Cells
Grzybowski M, Sapoznik V, Xicola R, Doyle B, Grzybowski J, Martinez T, Anguera A, Llor X. S1272 Differential Regulation of Apoptosis Induction By Plantago Ovata Husk in Colorectal Cancer Cells. Induction of the TNF-Alpha Apoptosis Cascade in Metastatic Cells. Gastroenterology 2009, 136: a-226. DOI: 10.1016/s0016-5085(09)61021-0.Peer-Reviewed Original ResearchGamma irradiation alters the phenotype and function of CD4+CD25+ regulatory T cells
Cao M, Cabrera R, Xu Y, Liu C, Nelson D. Gamma irradiation alters the phenotype and function of CD4+CD25+ regulatory T cells. Cell Biology International 2009, 33: 565-571. PMID: 19268553, PMCID: PMC2683182, DOI: 10.1016/j.cellbi.2009.02.007.Peer-Reviewed Original ResearchConceptsRegulatory T cellsT cellsSuppression of TregsT cell proliferationDose-dependent reductionTreg expressionTreg proliferationEffector cellsImmunologic balanceSuppressive capacityTregsGy/minDose gamma irradiationFlow cytometryThymidine incorporationUpregulated BaxCell proliferationCancer therapyHigh-dose gamma irradiationApoptosis inductionDifferent dosagesFunction changesGamma irradiationPhenotypeIrradiation alters
2007
Pharmacologic Replacement of BIM BH3 Reactivates Apoptosis in Hematologic Cancer and Lymphoproliferative Disease.
LaBelle J, Fisher J, Katz S, Bird G, Lawrence C, Silverstein A, Walensky L. Pharmacologic Replacement of BIM BH3 Reactivates Apoptosis in Hematologic Cancer and Lymphoproliferative Disease. Blood 2007, 110: 524. DOI: 10.1182/blood.v110.11.524.524.Peer-Reviewed Original ResearchAnti-apoptotic proteinsBim-/- miceBcl-2 family protein interactionsBCL-2 domainsBH3-only proteinsRegulation of apoptosisApoptotic signaling pathwaysPro-apoptotic proteinsPromising pharmacologic strategyAnti-apoptotic targetsCellular homeostasisBH3 domainProtein interactionsDeath pathwaysProtein networkCellular survivalSignaling pathwaysApoptotic blockadesCell deathSAHBLymphoma cell linesBH3Apoptosis inductionProteinMitochondrial damage
2004
Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery
Fischer U, Tossios P, Huebner A, Geissler H, Bloch W, Mehlhorn U. Myocardial apoptosis prevention by radical scavenging in patients undergoing cardiac surgery. Journal Of Thoracic And Cardiovascular Surgery 2004, 128: 103-108. PMID: 15224028, DOI: 10.1016/j.jtcvs.2003.11.034.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAgedApoptosisCardiopulmonary BypassCaspase 3Caspase 7CaspasesCoronary Artery BypassCoronary Artery DiseaseDouble-Blind MethodEnzyme ActivationFemaleFree Radical ScavengersHeart RateHumansMaleMiddle AgedMyocardiumMyocytes, CardiacTreatment OutcomeVascular ResistanceVentricular Function, LeftVentricular PressureConceptsVentricular biopsy samplesN-acetylcysteineCardioplegic arrestBiopsy samplesCoronary artery bypass graft patientsLeft ventricular cardiac myocytesCardiac surgery patientsBypass graft patientsDouble-blind fashionConfidence intervalsCaspase-3Apoptosis inductionVentricular cardiac myocytesOxygen-derived speciesGraft patientsGray unitsSurgery patientsCardiac surgeryCardiopulmonary bypassClinical outcomesActive caspase-3Myocardial ischemiaApoptosis signal cascadePatientsCardiac myocytes
2003
The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes
LLOR X, PONS E, ROCA A, ÀLVAREZ M, MAÑÉ J, FERNÁNDEZ-BAÑARES F, GASSULL MA. The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clinical Nutrition 2003, 22: 71-79. PMID: 12553953, DOI: 10.1054/clnu.2002.0627.Peer-Reviewed Original ResearchMeSH KeywordsApoptosisCaco-2 CellsCells, CulturedCyclooxygenase 2Fish OilsGenes, bcl-2HT29 CellsHumansIsoenzymesKeratin-8KeratinsLinoleic AcidMembrane ProteinsMicroscopy, FluorescenceOleic AcidOlive OilPlant OilsProstaglandin-Endoperoxide SynthasesReverse Transcriptase Polymerase Chain ReactionSucrase-Isomaltase ComplexThymidineConceptsColorectal cancer developmentCOX-2Bcl-2 expressionFish oilCancer developmentHT-29 colorectal cancer cellsCell proliferationLinoleic acidColorectal cancer cellsMain dietary sourceFatty acidsLate effectsColorectal carcinogenesisAntineoplastic effectsNeoplastic processInduction of apoptosisEarly downregulationImportant mediatorOlive oilCancer cellsCaco-2Dietary sourcesBcl-2Different fatsApoptosis induction
2002
Apoptosis Induction and Cell Cycle Arrest in T-Lymphoblastic Leukemic Cells (CEMSS) by Damnacanthal
Ali A, Norhadiani I, Yazan L, Mohamad S, Lajis N, Rahim R, Dhaliwal J, Abdullah N, Inayat-Hussain S. Apoptosis Induction and Cell Cycle Arrest in T-Lymphoblastic Leukemic Cells (CEMSS) by Damnacanthal. Animal Cell Technology: Basic & Applied Aspects 2002, 473-478. DOI: 10.1007/978-94-017-0728-2_82.Peer-Reviewed Original Research
2001
Drosophila MyD88 is an adapter in the Toll signaling pathway
Horng T, Medzhitov R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 12654-12658. PMID: 11606776, PMCID: PMC60109, DOI: 10.1073/pnas.231471798.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAntigens, DifferentiationApoptosisCarrier ProteinsCaspasesDrosophila ProteinsFas-Associated Death Domain ProteinInsect ProteinsMembrane GlycoproteinsMyeloid Differentiation Factor 88Receptors, Cell SurfaceReceptors, ImmunologicToll-Like ReceptorsConceptsCell surface receptorsToll-1Death domain-containing proteinDomain-containing proteinsSurface receptorsDominant-negative versionDeath receptor-mediated pathwayDrosophila homologueS2 cellsApical caspasesEvolutionary ancestorInvertebrate cellsDMyD88Toll receptorAdult fliesDownstream componentsCaspase activationHuman MyD88Reporter geneInnate immune recognitionGenetic studiesAntifungal peptidesReceptor-mediated pathwayApoptosis inductionPelle
2000
The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses
Schwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Kim K, Crews C, Kraft R, Groettrup M. The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. The Journal Of Immunology 2000, 164: 6147-6157. PMID: 10843664, PMCID: PMC2507740, DOI: 10.4049/jimmunol.164.12.6147.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAmino Acid SequenceAnimalsAntigen PresentationAntigens, ViralApoptosisCell DivisionCell LineCysteine EndopeptidasesCysteine Proteinase InhibitorsDose-Response Relationship, ImmunologicDown-RegulationGlycoproteinsHumansHybridomasHydrolysisLymphocyte ActivationLymphocytic choriomeningitis virusMiceMice, Inbred BALB CMice, Inbred C57BLMolecular Sequence DataMultienzyme ComplexesNucleoproteinsOligopeptidesPeptide FragmentsProteasome Endopeptidase ComplexT-Lymphocytes, CytotoxicTumor Cells, CulturedUbiquitinsUp-RegulationViral ProteinsConceptsAg presentationProteasome inhibitor lactacystinCellular proliferationProteasome activitySelective inhibitionMHC class IDose-dependent mannerTransplant rejectionAutoimmune diseasesMouse CMVAntigen presentationMost MHC class INontoxic dosesChymotrypsin-like activityClass ISelective proteasome inhibitor lactacystinApoptosis inductionMicroM lactacystinViral proteinsPresentationInhibitionComplete inhibitionLactacystinVivoProliferation
1996
Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro
Escribano J, Alonso G, Coca-Prados M, Fernández J. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters 1996, 100: 23-30. PMID: 8620447, DOI: 10.1016/0304-3835(95)04067-6.Peer-Reviewed Original ResearchConceptsExtract of saffronCytotoxic effectsCell growth inhibitionCancer therapeutic agentsHuman tumor cellsHuman cancer cellsPyknotic nucleiInhibitory growth effectTherapeutic agentsTumor cellsCancer cellsEthanolic extractApoptosis inductionCrocinGrowth inhibitionReduced cytoplasmCell growthCellsCrocetinCell shrinkageDosesHeLa cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply