2025
CRISPR-Cas9 system in autosomal dominant polycystic kidney disease: a comprehensive review
Kang S, Park S, Lee M, Kronbichler A, Shin J. CRISPR-Cas9 system in autosomal dominant polycystic kidney disease: a comprehensive review. Childhood Kidney Diseases 2025, 29: 4-11. DOI: 10.3339/ckd.25.008.Peer-Reviewed Original ResearchGenetic kidney diseaseCRISPR/CRISPR-associated protein 9Genetic diseasesAutosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseFunction of genesPolycystic kidney diseaseCRISPR-Cas9 SystemCRISPR-Cas9 technologyGenomic sitesPathogenic genesDevelopment of therapeutic agentsCRISPR-Cas9CRISPR technologyGenesProtein 9Kidney developmentGene editingGene mutationsKidney diseaseMutationsTherapeutic agentsCRISPREffects of drugs
2021
Deletion of Cdh16 Ksp-cadherin leads to a developmental delay in the ability to maximally concentrate urine in mouse
Thomson R, Dynia DW, Burlein S, Thomson BR, Booth C, Knauf F, Wang T, Aronson P. Deletion of Cdh16 Ksp-cadherin leads to a developmental delay in the ability to maximally concentrate urine in mouse. American Journal Of Physiology. Renal Physiology 2021, 320: f1106-f1122. PMID: 33938239, PMCID: PMC8285649, DOI: 10.1152/ajprenal.00556.2020.Peer-Reviewed Original ResearchConceptsKsp-cadherinCell adhesion moleculeAtypical memberKidney developmentMammalian kidneyAdult mammalian kidneyBasolateral membraneNormal kidney developmentEpithelial cellsAdhesion moleculesMutant animalsExpression analysisSpecific expressionE-cadherin expressionWestern blot analysisEpithelial phenotypePrincipal proteinE-cadherinBlot analysisMouse linesAquaporin-2CadherinCritical roleDevelopmental delayKnockout mice
2019
In vivo analysis of renal epithelial cells in zebrafish
Li Y, Xu W, Jerman S, Sun Z. In vivo analysis of renal epithelial cells in zebrafish. Methods In Cell Biology 2019, 154: 163-181. PMID: 31493817, DOI: 10.1016/bs.mcb.2019.04.016.Peer-Reviewed Original Research
2017
Chapter Two Using Zebrafish to Study Kidney Development and Disease
Jerman S, Sun Z. Chapter Two Using Zebrafish to Study Kidney Development and Disease. Current Topics In Developmental Biology 2017, 124: 41-79. PMID: 28335864, DOI: 10.1016/bs.ctdb.2016.11.008.Peer-Reviewed Original ResearchConceptsKidney developmentAttractive vertebrate modelShares significant similarityRenal developmental defectsVertebrate modelVertebrate kidneyDanio rerioZebrafish modelSignificant similarityZebrafishDevelopmental defectsWater homeostasisRepair processFunctional unitsVertebratesRerioPowerful toolHuman patientsInvaluable informationSimilarityProfound potentialChapter TwoHomeostasisPromising modelDevelopment
2016
miR-200 family promotes podocyte differentiation through repression of RSAD2
Li Z, Yin H, Hao S, Wang L, Gao J, Tan X, Yang Z. miR-200 family promotes podocyte differentiation through repression of RSAD2. Scientific Reports 2016, 6: 27105. PMID: 27251424, PMCID: PMC4890021, DOI: 10.1038/srep27105.Peer-Reviewed Original ResearchConceptsMiR-200 familyPodocyte differentiationKidney developmentCell differentiationMiR-200aDifferentiation of podocytesUnderlying molecular mechanismsCellular functionsRNA interferencePostnatal mouse kidneyMolecular mechanismsDifferentiated cellsNovel roleMature podocytesHigher upregulationProtein 2 expressionRSAD2MiR-200bMiR-429DifferentiationPodocyte dedifferentiationRepressionCharacteristic phenotypic featuresPhenotypic featuresMorphological characteristics
2014
Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development. PLOS ONE 2014, 9: e88816. PMID: 24594709, PMCID: PMC3940423, DOI: 10.1371/journal.pone.0088816.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseasePolycystin-1Gene productsKidney developmentKidney diseaseRNA-binding proteinMouse kidney developmentPKD1 gene productEmbryonic day 8.5Human autosomal dominant polycystic kidney diseaseNew molecular linkTemporal expression patternsEarly ureteric budDominant polycystic kidney diseaseC. elegansHuman polycystic kidney diseaseMouse embryogenesisMouse developmentPostnatal kidney developmentMouse homologueCystic phenotypeExpression patternsMolecular linkMultiple species
2013
Developmental changes of BKCa channels depend on differentiation status in cultured podocytes
Yang J, Xu P, Xie Y, Li Z, Xu J, Zhang T, Yang Z. Developmental changes of BKCa channels depend on differentiation status in cultured podocytes. In Vitro Cellular & Developmental Biology - Animal 2013, 49: 205-211. PMID: 23443253, DOI: 10.1007/s11626-013-9590-8.Peer-Reviewed Original ResearchConceptsBKCa channelsWhole-cell patch-clamp techniqueChannel protein expressionIon channel expressionDevelopmental changesPatch-clamp techniqueLarge-conductance Ca2Development of kidneyRemarkable cell typeImmortalized mouse podocyte cell lineImportant ion channelsMouse podocyte cell linePodocyte cell lineChannel expressionFunctional maturationCell signalingCultured podocytesKidney developmentKidney glomeruliProtein expressionPodocytesCell typesDifferentiation statusIon channelsCell lines
2011
Qilin Is Essential for Cilia Assembly and Normal Kidney Development in Zebrafish
Li J, Sun Z. Qilin Is Essential for Cilia Assembly and Normal Kidney Development in Zebrafish. PLOS ONE 2011, 6: e27365. PMID: 22102889, PMCID: PMC3216947, DOI: 10.1371/journal.pone.0027365.Peer-Reviewed Original ResearchConceptsCilia assemblyIFT complex B proteinsKidney developmentForward genetic screenCoiled-coil domainEssential roleKidney cystsNormal kidney developmentGenetic screenMutant phenotypeVestigial organelleNovel genesPolycystic kidney diseaseCilia formationDeletion analysisB geneB proteinB mutantsGenetic analysisMeckel-Gruber syndromeN-terminusFunctional analysisRescue experimentsZebrafishHuman diseases
2007
Semaphorin3a inhibits ureteric bud branching morphogenesis
Tufro A, Teichman J, Woda C, Villegas G. Semaphorin3a inhibits ureteric bud branching morphogenesis. Cells And Development 2007, 125: 558-568. PMID: 18249526, PMCID: PMC3992265, DOI: 10.1016/j.mod.2007.12.003.Peer-Reviewed Original ResearchConceptsUreteric budUreteric bud branchingAkt survival pathwayUreteric bud treeUreteric bud cellsAntisense morpholinoClass 3 semaphorinsVascular patterningMetanephric organ cultureFactor signalingMouse embryosNegative regulatorKidney developmentSurvival pathwaysGuidance proteinsNeurotrophic Factor SignalingSema3A effectBudsRenal epitheliumMorphogenesisBud cellsMutant miceRecombinant Sema3AGrowth factorSema3ACrosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways
Tufro A, Teichman J, Banu N, Villegas G. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochemical And Biophysical Research Communications 2007, 358: 410-416. PMID: 17490619, DOI: 10.1016/j.bbrc.2007.04.146.Peer-Reviewed Original ResearchConceptsVascular endothelial growth factorCell proliferationEndothelial growth factorNeurotrophic factorGDNF/RETEmbryonic kidney explantsUreteric bud branchingUreteric bud cellsC-RetGrowth factorRT-PCRVEGFNovel cooperative interactionVEGFR2Branching morphogenesisRETVEGFR2 autophosphorylationGDNFKidney developmentBud cellsUreteric budAdditive effectMajor regulatorKidney explantsPhosphorylation
2006
Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney
Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon A, Pinthus J, Mor Y, Barasch J, Amariglio N, Reisner Y, Kaminski N, Rechavi G. Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney. Cancer Research 2006, 66: 6040-6049. PMID: 16778176, DOI: 10.1158/0008-5472.can-05-4528.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene Expression ProfilingGenomic ImprintingHomeodomain ProteinsHumansKidneyKidney NeoplasmsMiceMice, Inbred BALB CMice, NudeMice, SCIDMultigene FamilyMyeloid Ecotropic Viral Integration Site 1 ProteinNeoplasm ProteinsNeoplasm TransplantationNeoplastic Stem CellsOligonucleotide Array Sequence AnalysisRatsTransplantation, HeterologousWilms TumorConceptsProgenitor cell populationsRenal progenitor cell populationStemness genesCell populationsNormal kidney developmentAdult mouse kidneyHomeobox genesMetanephric blastemaExpression of Peg3Transcriptional profilingOligonucleotide microarraysKidney developmentDifferentiated cellsCell differentiationHuman fetal kidneyTumor progenitor cellsGenesReal-time PCRMouse nephrogenesisBlastemaWT samplesProgenitor cellsStromal phenotypeWT sourcesPeg3
2002
Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development.
Dekel B, Amariglio N, Kaminski N, Schwartz A, Goshen E, Arditti FD, Tsarfaty I, Passwell JH, Reisner Y, Rechavi G. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. Journal Of The American Society Of Nephrology 2002, 13: 977-990. PMID: 11912257, DOI: 10.1681/asn.v134977.Peer-Reviewed Original ResearchConceptsHuman kidney developmentKidney developmentNormal human kidney developmentSpecific genesGene expressionGlobal gene expression patternsGlobal gene expressionMature nephronsGene expression patternsCell cycle regulatorsExtracellular matrix moleculesResult of hybridizationMolecular regulationCDNA arraysEmbryonic precursorsExpression patternsCycle regulatorsExpression profilesGenesMatrix moleculesExpression levelsAdult kidneyGrowth factorMetanephroiDevelopment of strategiesExpression of PKD1 and PKD2 Transcripts and Proteins in Human Embryo and during Normal Kidney Development
Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attié-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC. Expression of PKD1 and PKD2 Transcripts and Proteins in Human Embryo and during Normal Kidney Development. American Journal Of Pathology 2002, 160: 973-983. PMID: 11891195, PMCID: PMC1867156, DOI: 10.1016/s0002-9440(10)64919-x.Peer-Reviewed Original ResearchConceptsPolycystin-1Kidney developmentPolycystin-2Expression patternsPKD1 expressionHuman genetic disordersLarge transmembrane proteinCell-matrix interactionsNormal kidney developmentMutations of PKD1Expression of PKD1Northern blot analysisGenes decreasesTransmembrane proteinHuman embryogenesisEndodermal derivativesSpatiotemporal expressionUreteric budPKD1 transcriptPKD2Transmembrane glycoproteinTranscriptsPKD1Nephron developmentProtein
2001
Human disease: Calcium signaling in polycystic kidney disease
Somlo S, Ehrlich B. Human disease: Calcium signaling in polycystic kidney disease. Current Biology 2001, 11: r356-r360. PMID: 11369247, DOI: 10.1016/s0960-9822(01)00193-2.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply